Abstract:Generative models can be used to synthesize 3D objects of high quality and diversity. However, there is typically no control over the properties of the generated object.This paper proposes a novel generative adversarial network (GAN) setup that generates 3D point cloud shapes conditioned on a continuous parameter. In an exemplary application, we use this to guide the generative process to create a 3D object with a custom-fit shape. We formulate this generation process in a multi-task setting by using the concept of auxiliary classifier GANs. Further, we propose to sample the generator label input for training from a kernel density estimation (KDE) of the dataset. Our ablations show that this leads to significant performance increase in regions with few samples. Extensive quantitative and qualitative experiments show that we gain explicit control over the object dimensions while maintaining good generation quality and diversity.
Abstract:An unresolved problem in Deep Learning is the ability of neural networks to cope with domain shifts during test-time, imposed by commonly fixing network parameters after training. Our proposed method Meta Test-Time Training (MT3), however, breaks this paradigm and enables adaption at test-time. We combine meta-learning, self-supervision and test-time training to learn to adapt to unseen test distributions. By minimizing the self-supervised loss, we learn task-specific model parameters for different tasks. A meta-model is optimized such that its adaption to the different task-specific models leads to higher performance on those tasks. During test-time a single unlabeled image is sufficient to adapt the meta-model parameters. This is achieved by minimizing only the self-supervised loss component resulting in a better prediction for that image. Our approach significantly improves the state-of-the-art results on the CIFAR-10-Corrupted image classification benchmark. Our implementation is available on GitHub.