Abstract:Personalized chatbot-based teaching assistants can be crucial in addressing increasing classroom sizes, especially where direct teacher presence is limited. Large language models (LLMs) offer a promising avenue, with increasing research exploring their educational utility. However, the challenge lies not only in establishing the efficacy of LLMs but also in discerning the nuances of interaction between learners and these models, which impact learners' engagement and results. We conducted a formative study in an undergraduate computer science classroom (N=145) and a controlled experiment on Prolific (N=356) to explore the impact of four pedagogically informed guidance strategies and the interaction between student approaches and LLM responses. Direct LLM answers marginally improved performance, while refining student solutions fostered trust. Our findings suggest a nuanced relationship between the guidance provided and LLM's role in either answering or refining student input. Based on our findings, we provide design recommendations for optimizing learner-LLM interactions.
Abstract:Exploring alternative ideas by rewriting text is integral to the writing process. State-of-the-art large language models (LLMs) can simplify writing variation generation. However, current interfaces pose challenges for simultaneous consideration of multiple variations: creating new versions without overwriting text can be difficult, and pasting them sequentially can clutter documents, increasing workload and disrupting writers' flow. To tackle this, we present ABScribe, an interface that supports rapid, yet visually structured, exploration of writing variations in human-AI co-writing tasks. With ABScribe, users can swiftly produce multiple variations using LLM prompts, which are auto-converted into reusable buttons. Variations are stored adjacently within text segments for rapid in-place comparisons using mouse-over interactions on a context toolbar. Our user study with 12 writers shows that ABScribe significantly reduces task workload (d = 1.20, p < 0.001), enhances user perceptions of the revision process (d = 2.41, p < 0.001) compared to a popular baseline workflow, and provides insights into how writers explore variations using LLMs.
Abstract:The use of algorithms for decision-making in higher education is steadily growing, promising cost-savings to institutions and personalized service for students but also raising ethical challenges around surveillance, fairness, and interpretation of data. To address the lack of systematic understanding of how these algorithms are currently designed, we reviewed an extensive corpus of papers proposing algorithms for decision-making in higher education. We categorized them based on input data, computational method, and target outcome, and then investigated the interrelations of these factors with the application of human-centered lenses: theoretical, participatory, or speculative design. We found that the models are trending towards deep learning, and increased use of student personal data and protected attributes, with the target scope expanding towards automated decisions. However, despite the associated decrease in interpretability and explainability, current development predominantly fails to incorporate human-centered lenses. We discuss the challenges with these trends and advocate for a human-centered approach.