Abstract:Scientific Machine Learning (ML) is gaining momentum as a cost-effective alternative to physics-based numerical solvers in many engineering applications. In fact, scientific ML is currently being used to build accurate and efficient surrogate models starting from high-fidelity numerical simulations, effectively encoding the parameterized temporal dynamics underlying Ordinary Differential Equations (ODEs), or even the spatio-temporal behavior underlying Partial Differential Equations (PDEs), in appropriately designed neural networks. We propose an extension of Latent Dynamics Networks (LDNets), namely Liquid Fourier LDNets (LFLDNets), to create parameterized space-time surrogate models for multiscale and multiphysics sets of highly nonlinear differential equations on complex geometries. LFLDNets employ a neurologically-inspired, sparse, liquid neural network for temporal dynamics, relaxing the requirement of a numerical solver for time advancement and leading to superior performance in terms of tunable parameters, accuracy, efficiency and learned trajectories with respect to neural ODEs based on feedforward fully-connected neural networks. Furthermore, in our implementation of LFLDNets, we use a Fourier embedding with a tunable kernel in the reconstruction network to learn high-frequency functions better and faster than using space coordinates directly as input. We challenge LFLDNets in the framework of computational cardiology and evaluate their capabilities on two 3-dimensional test cases arising from multiscale cardiac electrophysiology and cardiovascular hemodynamics. This paper illustrates the capability to run Artificial Intelligence-based numerical simulations on single or multiple GPUs in a matter of minutes and represents a significant step forward in the development of physics-informed digital twins.
Abstract:We present a new approach for nonlinear dimensionality reduction, specifically designed for computationally expensive mathematical models. We leverage autoencoders to discover a one-dimensional neural active manifold (NeurAM) capturing the model output variability, plus a simultaneously learnt surrogate model with inputs on this manifold. The proposed dimensionality reduction framework can then be applied to perform outer loop many-query tasks, like sensitivity analysis and uncertainty propagation. In particular, we prove, both theoretically under idealized conditions, and numerically in challenging test cases, how NeurAM can be used to obtain multifidelity sampling estimators with reduced variance by sampling the models on the discovered low-dimensional and shared manifold among models. Several numerical examples illustrate the main features of the proposed dimensionality reduction strategy, and highlight its advantages with respect to existing approaches in the literature.
Abstract:The substantial computational cost of high-fidelity models in numerical hemodynamics has, so far, relegated their use mainly to offline treatment planning. New breakthroughs in data-driven architectures and optimization techniques for fast surrogate modeling provide an exciting opportunity to overcome these limitations, enabling the use of such technology for time-critical decisions. We discuss an application to the repair of multiple stenosis in peripheral pulmonary artery disease through either transcatheter pulmonary artery rehabilitation or surgery, where it is of interest to achieve desired pressures and flows at specific locations in the pulmonary artery tree, while minimizing the risk for the patient. Since different degrees of success can be achieved in practice during treatment, we formulate the problem in probability, and solve it through a sample-based approach. We propose a new offline-online pipeline for probabilsitic real-time treatment planning which combines offline assimilation of boundary conditions, model reduction, and training dataset generation with online estimation of marginal probabilities, possibly conditioned on the degree of augmentation observed in already repaired lesions. Moreover, we propose a new approach for the parametrization of arbitrarily shaped vascular repairs through iterative corrections of a zero-dimensional approximant. We demonstrate this pipeline for a diseased model of the pulmonary artery tree available through the Vascular Model Repository.
Abstract:Reduced-order models based on physics are a popular choice in cardiovascular modeling due to their efficiency, but they may experience reduced accuracy when working with anatomies that contain numerous junctions or pathological conditions. We develop one-dimensional reduced-order models that simulate blood flow dynamics using a graph neural network trained on three-dimensional hemodynamic simulation data. Given the initial condition of the system, the network iteratively predicts the pressure and flow rate at the vessel centerline nodes. Our numerical results demonstrate the accuracy and generalizability of our method in physiological geometries comprising a variety of anatomies and boundary conditions. Our findings demonstrate that our approach can achieve errors below 2% and 3% for pressure and flow rate, respectively, provided there is adequate training data. As a result, our method exhibits superior performance compared to physics-based one-dimensional models, while maintaining high efficiency at inference time.