Abstract:Digital agriculture leverages technology to enhance crop yield, disease resilience, and soil health, playing a critical role in agricultural research. However, it raises privacy concerns such as adverse pricing, price discrimination, higher insurance costs, and manipulation of resources, deterring farm operators from sharing data due to potential misuse. This study introduces a privacy-preserving framework that addresses these risks while allowing secure data sharing for digital agriculture. Our framework enables comprehensive data analysis while protecting privacy. It allows stakeholders to harness research-driven policies that link public and private datasets. The proposed algorithm achieves this by: (1) identifying similar farmers based on private datasets, (2) providing aggregate information like time and location, (3) determining trends in price and product availability, and (4) correlating trends with public policy data, such as food insecurity statistics. We validate the framework with real-world Farmer's Market datasets, demonstrating its efficacy through machine learning models trained on linked privacy-preserved data. The results support policymakers and researchers in addressing food insecurity and pricing issues. This work significantly contributes to digital agriculture by providing a secure method for integrating and analyzing data, driving advancements in agricultural technology and development.
Abstract:Understanding and measuring the resilience of food supply networks is a global imperative to tackle increasing food insecurity. However, the complexity of these networks, with their multidimensional interactions and decisions, presents significant challenges. This paper proposes FLEE-GNN, a novel Federated Learning System for Edge-Enhanced Graph Neural Network, designed to overcome these challenges and enhance the analysis of geospatial resilience of multicommodity food flow network, which is one type of spatial networks. FLEE-GNN addresses the limitations of current methodologies, such as entropy-based methods, in terms of generalizability, scalability, and data privacy. It combines the robustness and adaptability of graph neural networks with the privacy-conscious and decentralized aspects of federated learning on food supply network resilience analysis across geographical regions. This paper also discusses FLEE-GNN's innovative data generation techniques, experimental designs, and future directions for improvement. The results show the advancements of this approach to quantifying the resilience of multicommodity food flow networks, contributing to efforts towards ensuring global food security using AI methods. The developed FLEE-GNN has the potential to be applied in other spatial networks with spatially heterogeneous sub-network distributions.