Abstract:The integration of artificial intelligence (AI) and optimization hold substantial promise for improving the efficiency, reliability, and resilience of engineered systems. Due to the networked nature of many engineered systems, ethically deploying methodologies at this intersection poses challenges that are distinct from other AI settings, thus motivating the development of ethical guidelines tailored to AI-enabled optimization. This paper highlights the need to go beyond fairness-driven algorithms to systematically address ethical decisions spanning the stages of modeling, data curation, results analysis, and implementation of optimization-based decision support tools. Accordingly, this paper identifies ethical considerations required when deploying algorithms at the intersection of AI and optimization via case studies in power systems as well as supply chain and logistics. Rather than providing a prescriptive set of rules, this paper aims to foster reflection and awareness among researchers and encourage consideration of ethical implications at every step of the decision-making process.
Abstract:Digital agriculture leverages technology to enhance crop yield, disease resilience, and soil health, playing a critical role in agricultural research. However, it raises privacy concerns such as adverse pricing, price discrimination, higher insurance costs, and manipulation of resources, deterring farm operators from sharing data due to potential misuse. This study introduces a privacy-preserving framework that addresses these risks while allowing secure data sharing for digital agriculture. Our framework enables comprehensive data analysis while protecting privacy. It allows stakeholders to harness research-driven policies that link public and private datasets. The proposed algorithm achieves this by: (1) identifying similar farmers based on private datasets, (2) providing aggregate information like time and location, (3) determining trends in price and product availability, and (4) correlating trends with public policy data, such as food insecurity statistics. We validate the framework with real-world Farmer's Market datasets, demonstrating its efficacy through machine learning models trained on linked privacy-preserved data. The results support policymakers and researchers in addressing food insecurity and pricing issues. This work significantly contributes to digital agriculture by providing a secure method for integrating and analyzing data, driving advancements in agricultural technology and development.