Abstract:Recommender systems play an important role in supporting the achievement of the United Nations sustainable development goals (SDGs). In recommender systems, explanations can support different goals, such as increasing a user's trust in a recommendation, persuading a user to purchase specific items, or increasing the understanding of the reasons behind a recommendation. In this paper, we discuss the concept of "sustainability-aware persuasive explanations" which we regard as a major concept to support the achievement of the mentioned SDGs. Such explanations are orthogonal to most existing explanation approaches since they focus on a "less is more" principle, which per se is not included in existing e-commerce platforms. Based on a user study in three item domains, we analyze the potential impacts of sustainability-aware persuasive explanations. The study results are promising regarding user acceptance and the potential impacts of such explanations.
Abstract:Sports recommender systems receive an increasing attention due to their potential of fostering healthy living, improving personal well-being, and increasing performances in sport. These systems support people in sports, for example, by the recommendation of healthy and performance boosting food items, the recommendation of training practices, talent and team recommendation, and the recommendation of specific tactics in competitions. With applications in the virtual world, for example, the recommendation of maps or opponents in e-sports, these systems already transcend conventional sports scenarios where physical presence is needed. On the basis of different working examples, we present an overview of sports recommender systems applications and techniques. Overall, we analyze the related state-of-the-art and discuss open research issues.
Abstract:In many scenarios, configurators support the configuration of a solution that satisfies the preferences of a single user. The concept of \emph{multi-configuration} is based on the idea of configuring a set of configurations. Such a functionality is relevant in scenarios such as the configuration of personalized exams, the configuration of project teams, and the configuration of different trips for individual members of a tourist group (e.g., when visiting a specific city). In this paper, we exemplify the application of multi-configuration for generating individualized exams. We also provide a constraint solver performance analysis which helps to gain some insights into corresponding performance issues.
Abstract:Recommender systems assist users in decision-making, where the presentation of recommended items and their explanations are critical factors for enhancing the overall user experience. Although various methods for generating explanations have been proposed, there is still room for improvement, particularly for users who lack expertise in a specific item domain. In this study, we introduce the novel concept of \textit{consequence-based explanations}, a type of explanation that emphasizes the individual impact of consuming a recommended item on the user, which makes the effect of following recommendations clearer. We conducted an online user study to examine our assumption about the appreciation of consequence-based explanations and their impacts on different explanation aims in recommender systems. Our findings highlight the importance of consequence-based explanations, which were well-received by users and effectively improved user satisfaction in recommender systems. These results provide valuable insights for designing engaging explanations that can enhance the overall user experience in decision-making.
Abstract:Constraint-based applications attempt to identify a solution that meets all defined user requirements. If the requirements are inconsistent with the underlying constraint set, algorithms that compute diagnoses for inconsistent constraints should be implemented to help users resolve the "no solution could be found" dilemma. FastDiag is a typical direct diagnosis algorithm that supports diagnosis calculation without predetermining conflicts. However, this approach faces runtime performance issues, especially when analyzing complex and large-scale knowledge bases. In this paper, we propose a novel algorithm, so-called FastDiagP, which is based on the idea of speculative programming. This algorithm extends FastDiag by integrating a parallelization mechanism that anticipates and pre-calculates consistency checks requested by FastDiag. This mechanism helps to provide consistency checks with fast answers and boosts the algorithm's runtime performance. The performance improvements of our proposed algorithm have been shown through empirical results using the Linux-2.6.3.33 configuration knowledge base.
Abstract:Feature model configuration can be supported on the basis of various types of reasoning approaches. Examples thereof are SAT solving, constraint solving, and answer set programming (ASP). Using these approaches requires technical expertise of how to define and solve the underlying configuration problem. In this paper, we show how to apply conjunctive queries typically supported by today's relational database systems to solve constraint satisfaction problems (CSP) and -- more specifically -- feature model configuration tasks. This approach allows the application of a wide-spread database technology to solve configuration tasks and also allows for new algorithmic approaches when it comes to the identification and resolution of inconsistencies.
Abstract:Configuration is a successful application area of Artificial Intelligence. In the majority of the cases, configuration systems focus on configuring one solution (configuration) that satisfies the preferences of a single user or a group of users. In this paper, we introduce a new configuration approach - multi-configuration - that focuses on scenarios where the outcome of a configuration process is a set of configurations. Example applications thereof are the configuration of personalized exams for individual students, the configuration of project teams, reviewer-to-paper assignment, and hotel room assignments including individualized city trips for tourist groups. For multi-configuration scenarios, we exemplify a constraint satisfaction problem representation in the context of configuring exams. The paper is concluded with a discussion of open issues for future work.
Abstract:Aspects such as limited resources, frequently changing market demands, and different technical restrictions regarding the implementation of software requirements (features) often demand for the prioritization of requirements. The task of prioritization is the ranking and selection of requirements that should be included in future software releases. In this context, an intelligent prioritization decision support is extremely important. The prioritization approaches discussed in this paper are based on different Artificial Intelligence (AI) techniques that can help to improve the overall quality of requirements prioritization processes
Abstract:Constraint-based recommenders support users in the identification of items (products) fitting their wishes and needs. Example domains are financial services and electronic equipment. In this paper we show how divide-and-conquer based (direct) diagnosis algorithms (no conflict detection is needed) can be exploited in constraint-based recommendation scenarios. In this context, we provide an overview of the MediaWiki-based recommendation environment WeeVis.
Abstract:Constraint-based environments such as configuration systems, recommender systems, and scheduling systems support users in different decision making scenarios. These environments exploit a knowledge base for determining solutions of interest for the user. The development and maintenance of such knowledge bases is an extremely time-consuming and error-prone task. Users often specify constraints which do not reflect the real-world. For example, redundant constraints are specified which often increase both, the effort for calculating a solution and efforts related to knowledge base development and maintenance. In this paper we present a new algorithm (CoreDiag) which can be exploited for the determination of minimal cores (minimal non-redundant constraint sets). The algorithm is especially useful for distributed knowledge engineering scenarios where the degree of redundancy can become high. In order to show the applicability of our approach, we present an empirical study conducted with commercial configuration knowledge bases.