Abstract:Constraint-based recommenders support users in the identification of items (products) fitting their wishes and needs. Example domains are financial services and electronic equipment. In this paper we show how divide-and-conquer based (direct) diagnosis algorithms (no conflict detection is needed) can be exploited in constraint-based recommendation scenarios. In this context, we provide an overview of the MediaWiki-based recommendation environment WeeVis.
Abstract:The knowledge engineering bottleneck is still a major challenge in configurator projects. In this paper we show how recommender systems can support knowledge base development and maintenance processes. We discuss a couple of scenarios for the application of recommender systems in knowledge engineering and report the results of empirical studies which show the importance of user-centered configuration knowledge organization.