Abstract:Sports recommender systems receive an increasing attention due to their potential of fostering healthy living, improving personal well-being, and increasing performances in sport. These systems support people in sports, for example, by the recommendation of healthy and performance boosting food items, the recommendation of training practices, talent and team recommendation, and the recommendation of specific tactics in competitions. With applications in the virtual world, for example, the recommendation of maps or opponents in e-sports, these systems already transcend conventional sports scenarios where physical presence is needed. On the basis of different working examples, we present an overview of sports recommender systems applications and techniques. Overall, we analyze the related state-of-the-art and discuss open research issues.
Abstract:Configuration is a successful application area of Artificial Intelligence. In the majority of the cases, configuration systems focus on configuring one solution (configuration) that satisfies the preferences of a single user or a group of users. In this paper, we introduce a new configuration approach - multi-configuration - that focuses on scenarios where the outcome of a configuration process is a set of configurations. Example applications thereof are the configuration of personalized exams for individual students, the configuration of project teams, reviewer-to-paper assignment, and hotel room assignments including individualized city trips for tourist groups. For multi-configuration scenarios, we exemplify a constraint satisfaction problem representation in the context of configuring exams. The paper is concluded with a discussion of open issues for future work.
Abstract:Many domains require scalable algorithms that help to determine diagnoses efficiently and often within predefined time limits. Anytime diagnosis is able to determine solutions in such a way and thus is especially useful in real-time scenarios such as production scheduling, robot control, and communication networks management where diagnosis and corresponding reconfiguration capabilities play a major role. Anytime diagnosis in many cases comes along with a trade-off between diagnosis quality and the efficiency of diagnostic reasoning. In this paper we introduce and analyze FlexDiag which is an anytime direct diagnosis approach. We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain. Results show that FlexDiag helps to significantly increase the performance of direct diagnosis search with corresponding quality tradeoffs in terms of minimality and accuracy.