Abstract:Sustainability development goals (SDGs) are regarded as a universal call to action with the overall objectives of planet protection, ending of poverty, and ensuring peace and prosperity for all people. In order to achieve these objectives, different AI technologies play a major role. Specifically, recommender systems can provide support for organizations and individuals to achieve the defined goals. Recommender systems integrate AI technologies such as machine learning, explainable AI (XAI), case-based reasoning, and constraint solving in order to find and explain user-relevant alternatives from a potentially large set of options. In this article, we summarize the state of the art in applying recommender systems to support the achievement of sustainability development goals. In this context, we discuss open issues for future research.
Abstract:Recommender systems play an important role in supporting the achievement of the United Nations sustainable development goals (SDGs). In recommender systems, explanations can support different goals, such as increasing a user's trust in a recommendation, persuading a user to purchase specific items, or increasing the understanding of the reasons behind a recommendation. In this paper, we discuss the concept of "sustainability-aware persuasive explanations" which we regard as a major concept to support the achievement of the mentioned SDGs. Such explanations are orthogonal to most existing explanation approaches since they focus on a "less is more" principle, which per se is not included in existing e-commerce platforms. Based on a user study in three item domains, we analyze the potential impacts of sustainability-aware persuasive explanations. The study results are promising regarding user acceptance and the potential impacts of such explanations.