Abstract:Group equivariance has emerged as a valuable inductive bias in deep learning, enhancing generalization, data efficiency, and robustness. Classically, group equivariant methods require the groups of interest to be known beforehand, which may not be realistic for real-world data. Additionally, baking in fixed group equivariance may impose overly restrictive constraints on model architecture. This highlights the need for methods that can dynamically discover and apply symmetries as soft constraints. For neural network architectures, equivariance is commonly achieved through group transformations of a canonical weight tensor, resulting in weight sharing over a given group $G$. In this work, we propose to learn such a weight-sharing scheme by defining a collection of learnable doubly stochastic matrices that act as soft permutation matrices on canonical weight tensors, which can take regular group representations as a special case. This yields learnable kernel transformations that are jointly optimized with downstream tasks. We show that when the dataset exhibits strong symmetries, the permutation matrices will converge to regular group representations and our weight-sharing networks effectively become regular group convolutions. Additionally, the flexibility of the method enables it to effectively pick up on partial symmetries.
Abstract:Relative representations are an established approach to zero-shot model stitching, consisting of a non-trainable transformation of the latent space of a deep neural network. Based on insights of topological and geometric nature, we propose two improvements to relative representations. First, we introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations. The latter coincides with the symmetries in parameter space induced by common activation functions. Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes. We provide an empirical investigation on a natural language task, where both the proposed variations yield improved performance on zero-shot model stitching.