Abstract:We propose a neural network architecture that can learn discriminative geometric representations of data from persistence diagrams, common descriptors of Topological Data Analysis. The learned representations enjoy Lipschitz stability with a controllable Lipschitz constant. In adversarial learning, this stability can be used to certify $\epsilon$-robustness for samples in a dataset, which we demonstrate on the ORBIT5K dataset representing the orbits of a discrete dynamical system.
Abstract:Relative representations are an established approach to zero-shot model stitching, consisting of a non-trainable transformation of the latent space of a deep neural network. Based on insights of topological and geometric nature, we propose two improvements to relative representations. First, we introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations. The latter coincides with the symmetries in parameter space induced by common activation functions. Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes. We provide an empirical investigation on a natural language task, where both the proposed variations yield improved performance on zero-shot model stitching.