Abstract:Topic models are a popular tool for understanding text collections, but their evaluation has been a point of contention. Automated evaluation metrics such as coherence are often used, however, their validity has been questioned for neural topic models (NTMs) and can overlook the benefits of a model in real world applications. To this end, we conduct the first evaluation of neural, supervised and classical topic models in an interactive task based setting. We combine topic models with a classifier and test their ability to help humans conduct content analysis and document annotation. From simulated, real user and expert pilot studies, the Contextual Neural Topic Model does the best on cluster evaluation metrics and human evaluations; however, LDA is competitive with two other NTMs under our simulated experiment and user study results, contrary to what coherence scores suggest. We show that current automated metrics do not provide a complete picture of topic modeling capabilities, but the right choice of NTMs can be better than classical models on practical tasks.
Abstract:Maintenance work orders are commonly used to document information about wind turbine operation and maintenance. This includes details about proactive and reactive wind turbine downtimes, such as preventative and corrective maintenance. However, the information contained in maintenance work orders is often unstructured and difficult to analyze, making it challenging for decision-makers to use this information for optimizing operation and maintenance. To address this issue, this work presents three different approaches to calculate reliability key performance indicators from maintenance work orders. The first approach involves manual labeling of the maintenance work orders by domain experts, using the schema defined in an industrial guideline to assign the label accordingly. The second approach involves the development of a model that automatically labels the maintenance work orders using text classification methods. The third technique uses an AI-assisted tagging tool to tag and structure the raw maintenance information contained in the maintenance work orders. The resulting calculated reliability key performance indicator of the first approach are used as a benchmark for comparison with the results of the second and third approaches. The quality and time spent are considered as criteria for evaluation. Overall, these three methods make extracting maintenance information from maintenance work orders more efficient, enable the assessment of reliability key performance indicators and therefore support the optimization of wind turbine operation and maintenance.