Abstract:We present BEHAVIOR-1K, a comprehensive simulation benchmark for human-centered robotics. BEHAVIOR-1K includes two components, guided and motivated by the results of an extensive survey on "what do you want robots to do for you?". The first is the definition of 1,000 everyday activities, grounded in 50 scenes (houses, gardens, restaurants, offices, etc.) with more than 9,000 objects annotated with rich physical and semantic properties. The second is OMNIGIBSON, a novel simulation environment that supports these activities via realistic physics simulation and rendering of rigid bodies, deformable bodies, and liquids. Our experiments indicate that the activities in BEHAVIOR-1K are long-horizon and dependent on complex manipulation skills, both of which remain a challenge for even state-of-the-art robot learning solutions. To calibrate the simulation-to-reality gap of BEHAVIOR-1K, we provide an initial study on transferring solutions learned with a mobile manipulator in a simulated apartment to its real-world counterpart. We hope that BEHAVIOR-1K's human-grounded nature, diversity, and realism make it valuable for embodied AI and robot learning research. Project website: https://behavior.stanford.edu.
Abstract:Embodied AI agents in large scenes often need to navigate to find objects. In this work, we study a naturally emerging variant of the object navigation task, hierarchical relational object navigation (HRON), where the goal is to find objects specified by logical predicates organized in a hierarchical structure - objects related to furniture and then to rooms - such as finding an apple on top of a table in the kitchen. Solving such a task requires an efficient representation to reason about object relations and correlate the relations in the environment and in the task goal. HRON in large scenes (e.g. homes) is particularly challenging due to its partial observability and long horizon, which invites solutions that can compactly store the past information while effectively exploring the scene. We demonstrate experimentally that scene graphs are the best-suited representation compared to conventional representations such as images or 2D maps. We propose a solution that uses scene graphs as part of its input and integrates graph neural networks as its backbone, with an integrated task-driven attention mechanism, and demonstrate its better scalability and learning efficiency than state-of-the-art baselines.