Abstract:The last several years saw the emergence of AI assistants for code -- multi-purpose AI-based helpers in software engineering. Their quick development makes it necessary to better understand how specifically developers are using them, why they are not using them in certain parts of their development workflow, and what needs to be improved. In this work, we carried out a large-scale survey aimed at how AI assistants are used, focusing on specific software development activities and stages. We collected opinions of 481 programmers on five broad activities: (a) implementing new features, (b) writing tests, (c) bug triaging, (d) refactoring, and (e) writing natural-language artifacts, as well as their individual stages. Our results show that usage of AI assistants varies depending on activity and stage. For instance, developers find writing tests and natural-language artifacts to be the least enjoyable activities and want to delegate them the most, currently using AI assistants to generate tests and test data, as well as generating comments and docstrings most of all. This can be a good focus for features aimed to help developers right now. As for why developers do not use assistants, in addition to general things like trust and company policies, there are fixable issues that can serve as a guide for further research, e.g., the lack of project-size context, and lack of awareness about assistants. We believe that our comprehensive and specific results are especially needed now to steer active research toward where users actually need AI assistants.
Abstract:In our era of rapid technological advancement, the research landscape for writing assistants has become increasingly fragmented across various research communities. We seek to address this challenge by proposing a design space as a structured way to examine and explore the multidimensional space of intelligent and interactive writing assistants. Through a large community collaboration, we explore five aspects of writing assistants: task, user, technology, interaction, and ecosystem. Within each aspect, we define dimensions (i.e., fundamental components of an aspect) and codes (i.e., potential options for each dimension) by systematically reviewing 115 papers. Our design space aims to offer researchers and designers a practical tool to navigate, comprehend, and compare the various possibilities of writing assistants, and aid in the envisioning and design of new writing assistants.