Abstract:Distracted driving is a leading cause of road accidents globally. Identification of distracted driving involves reliably detecting and classifying various forms of driver distraction (e.g., texting, eating, or using in-car devices) from in-vehicle camera feeds to enhance road safety. This task is challenging due to the need for robust models that can generalize to a diverse set of driver behaviors without requiring extensive annotated datasets. In this paper, we propose KiD3, a novel method for distracted driver detection (DDD) by infusing auxiliary knowledge about semantic relations between entities in a scene and the structural configuration of the driver's pose. Specifically, we construct a unified framework that integrates the scene graphs, and driver pose information with the visual cues in video frames to create a holistic representation of the driver's actions.Our results indicate that KiD3 achieves a 13.64% accuracy improvement over the vision-only baseline by incorporating such auxiliary knowledge with visual information.
Abstract:Energy prediction in buildings plays a crucial role in effective energy management. Precise predictions are essential for achieving optimal energy consumption and distribution within the grid. This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption using historical energy data, occupancy patterns, and weather conditions. The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings compared to existing prediction models. We compare our LSTM model with established prediction methods, including linear regression, decision trees, and random forest. Encouragingly, the proposed LSTM model emerges as the superior performer across all metrics. It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007. An additional advantage of our developed model is its capacity to achieve efficient energy consumption forecasts even when trained on a limited dataset. We address concerns about overfitting (variance) and underfitting (bias) through rigorous training and evaluation on real-world data. In summary, our research contributes to energy prediction by offering a robust LSTM model that outperforms alternative methods and operates with remarkable efficiency, generalizability, and reliability.
Abstract:Major disruptions in tokamak pose a serious threat to the vessel and its surrounding pieces of equipment. The ability of the systems to detect any behavior that can lead to disruption can help in alerting the system beforehand and prevent its harmful effects. Many machine learning techniques have already been in use at large tokamaks like JET and ASDEX, but are not suitable for ADITYA, which is comparatively small. Through this work, we discuss a new real-time approach to predict the time of disruption in ADITYA tokamak and validate the results on an experimental dataset. The system uses selected diagnostics from the tokamak and after some pre-processing steps, sends them to a time-sequence Long Short-Term Memory (LSTM) network. The model can make the predictions 12 ms in advance at less computation cost that is quick enough to be deployed in real-time applications.