Abstract:Neural fields have become widely used in various fields, from shape representation to neural rendering, and for solving partial differential equations (PDEs). With the advent of hybrid neural field representations like Instant NGP that leverage small MLPs and explicit representations, these models train quickly and can fit large scenes. Yet in many applications like rendering and simulation, hybrid neural fields can cause noticeable and unreasonable artifacts. This is because they do not yield accurate spatial derivatives needed for these downstream applications. In this work, we propose two ways to circumvent these challenges. Our first approach is a post hoc operator that uses local polynomial-fitting to obtain more accurate derivatives from pre-trained hybrid neural fields. Additionally, we also propose a self-supervised fine-tuning approach that refines the neural field to yield accurate derivatives directly while preserving the initial signal. We show the application of our method on rendering, collision simulation, and solving PDEs. We observe that using our approach yields more accurate derivatives, reducing artifacts and leading to more accurate simulations in downstream applications.
Abstract:The manifold hypothesis (real world data concentrates near low-dimensional manifolds) is suggested as the principle behind the effectiveness of machine learning algorithms in very high dimensional problems that are common in domains such as vision and speech. Multiple methods have been proposed to explicitly incorporate the manifold hypothesis as a prior in modern Deep Neural Networks (DNNs), with varying success. In this paper, we propose a new method, Distance Learner, to incorporate this prior for DNN-based classifiers. Distance Learner is trained to predict the distance of a point from the underlying manifold of each class, rather than the class label. For classification, Distance Learner then chooses the class corresponding to the closest predicted class manifold. Distance Learner can also identify points as being out of distribution (belonging to neither class), if the distance to the closest manifold is higher than a threshold. We evaluate our method on multiple synthetic datasets and show that Distance Learner learns much more meaningful classification boundaries compared to a standard classifier. We also evaluate our method on the task of adversarial robustness, and find that it not only outperforms standard classifier by a large margin, but also performs at par with classifiers trained via state-of-the-art adversarial training.
Abstract:Vast availability of text data has enabled widespread training and use of AI systems that not only learn and predict attributes from the text but also generate text automatically. However, these AI models also learn gender, racial and ethnic biases present in the training data. In this paper, we present the first system that discovers the possibility that a given text portrays a gender stereotype associated with an occupation. If the possibility exists, the system offers counter-evidences of opposite gender also being associated with the same occupation in the context of user-provided geography and timespan. The system thus enables text de-biasing by assisting a human-in-the-loop. The system can not only act as a text pre-processor before training any AI model but also help human story writers write stories free of occupation-level gender bias in the geographical and temporal context of their choice.