Abstract:Weather forecasting is a vitally important tool for tasks ranging from planning day to day activities to disaster response planning. However, modeling weather has proven to be challenging task due to its chaotic and unpredictable nature. Each variable, from temperature to precipitation to wind, all influence the path the environment will take. As a result, all models tend to rapidly lose accuracy as the temporal range of their forecasts increase. Classical forecasting methods use a myriad of physics-based, numerical, and stochastic techniques to predict the change in weather variables over time. However, such forecasts often require a very large amount of data and are extremely computationally expensive. Furthermore, as climate and global weather patterns change, classical models are substantially more difficult and time-consuming to update for changing environments. Fortunately, with recent advances in deep learning and publicly available high quality weather datasets, deploying learning methods for estimating these complex systems has become feasible. The current state-of-the-art deep learning models have comparable accuracy to the industry standard numerical models and are becoming more ubiquitous in practice due to their adaptability. Our group seeks to improve upon existing deep learning based forecasting methods by increasing spatial resolutions of global weather predictions. Specifically, we are interested in performing super resolution (SR) on GraphCast temperature predictions by increasing the global precision from 1 degree of accuracy to 0.5 degrees, which is approximately 111km and 55km respectively.
Abstract:State-of-the-art large language models are sometimes distributed as open-source software but are also increasingly provided as a closed-source service. These closed-source large-language models typically see the widest usage by the public, however, they often do not provide an estimate of their uncertainty when responding to queries. As even the best models are prone to ``hallucinating" false information with high confidence, a lack of a reliable estimate of uncertainty limits the applicability of these models in critical settings. We explore estimating the uncertainty of closed-source LLMs via multiple rephrasings of an original base query. Specifically, we ask the model, multiple rephrased questions, and use the similarity of the answers as an estimate of uncertainty. We diverge from previous work in i) providing rules for rephrasing that are simple to memorize and use in practice ii) proposing a theoretical framework for why multiple rephrased queries obtain calibrated uncertainty estimates. Our method demonstrates significant improvements in the calibration of uncertainty estimates compared to the baseline and provides intuition as to how query strategies should be designed for optimal test calibration.
Abstract:Satellite Earth observations (EO) can provide affordable and timely information for assessing crop conditions and food production. Such monitoring systems are essential in Africa, where there is high food insecurity and sparse agricultural statistics. EO-based monitoring systems require accurate cropland maps to provide information about croplands, but there is a lack of data to determine which of the many available land cover maps most accurately identify cropland in African countries. This study provides a quantitative evaluation and intercomparison of 11 publicly available land cover maps to assess their suitability for cropland classification and EO-based agriculture monitoring in Africa using statistically rigorous reference datasets from 8 countries. We hope the results of this study will help users determine the most suitable map for their needs and encourage future work to focus on resolving inconsistencies between maps and improving accuracy in low-accuracy regions.