Abstract:This paper describes MAIA, a Multimodal Automated Interpretability Agent. MAIA is a system that uses neural models to automate neural model understanding tasks like feature interpretation and failure mode discovery. It equips a pre-trained vision-language model with a set of tools that support iterative experimentation on subcomponents of other models to explain their behavior. These include tools commonly used by human interpretability researchers: for synthesizing and editing inputs, computing maximally activating exemplars from real-world datasets, and summarizing and describing experimental results. Interpretability experiments proposed by MAIA compose these tools to describe and explain system behavior. We evaluate applications of MAIA to computer vision models. We first characterize MAIA's ability to describe (neuron-level) features in learned representations of images. Across several trained models and a novel dataset of synthetic vision neurons with paired ground-truth descriptions, MAIA produces descriptions comparable to those generated by expert human experimenters. We then show that MAIA can aid in two additional interpretability tasks: reducing sensitivity to spurious features, and automatically identifying inputs likely to be mis-classified.
Abstract:To date, most discoveries of network subcomponents that implement human-interpretable computations in deep vision models have involved close study of single units and large amounts of human labor. We explore scalable methods for extracting the subgraph of a vision model's computational graph that underlies recognition of a specific visual concept. We introduce a new method for identifying these subgraphs: specifying a visual concept using a few examples, and then tracing the interdependence of neuron activations across layers, or their functional connectivity. We find that our approach extracts circuits that causally affect model output, and that editing these circuits can defend large pretrained models from adversarial attacks.
Abstract:FREDSR is a GAN variant that aims to outperform traditional GAN models in specific tasks such as Single Image Super Resolution with extreme parameter efficiency at the cost of per-dataset generalizeability. FREDSR integrates fast Fourier transformation, residual prediction, diffusive discriminators, etc to achieve strong performance in comparisons to other models on the UHDSR4K dataset for Single Image 3x Super Resolution from 360p and 720p with only 37000 parameters. The model follows the characteristics of the given dataset, resulting in lower generalizeability but higher performance on tasks such as real time up-scaling.