Abstract:In the age of powerful diffusion models such as DALL-E and Stable Diffusion, many in the digital art community have suffered style mimicry attacks due to fine-tuning these models on their works. The ability to mimic an artist's style via text-to-image diffusion models raises serious ethical issues, especially without explicit consent. Glaze, a tool that applies various ranges of perturbations to digital art, has shown significant success in preventing style mimicry attacks, at the cost of artifacts ranging from imperceptible noise to severe quality degradation. The release of Glaze has sparked further discussions regarding the effectiveness of similar protection methods. In this paper, we propose GLEAN- applying I2I generative networks to strip perturbations from Glazed images, evaluating the performance of style mimicry attacks before and after GLEAN on the results of Glaze. GLEAN aims to support and enhance Glaze by highlighting its limitations and encouraging further development.
Abstract:FREDSR is a GAN variant that aims to outperform traditional GAN models in specific tasks such as Single Image Super Resolution with extreme parameter efficiency at the cost of per-dataset generalizeability. FREDSR integrates fast Fourier transformation, residual prediction, diffusive discriminators, etc to achieve strong performance in comparisons to other models on the UHDSR4K dataset for Single Image 3x Super Resolution from 360p and 720p with only 37000 parameters. The model follows the characteristics of the given dataset, resulting in lower generalizeability but higher performance on tasks such as real time up-scaling.