Abstract:Most existing language model agentic systems today are built and optimized for large language models (e.g., GPT, Claude, Gemini) via API calls. While powerful, this approach faces several limitations including high token costs and privacy concerns for sensitive applications. We introduce effGen, an open-source agentic framework optimized for small language models (SLMs) that enables effective, efficient, and secure local deployment (pip install effgen). effGen makes four major contributions: (1) Enhanced tool-calling with prompt optimization that compresses contexts by 70-80% while preserving task semantics, (2) Intelligent task decomposition that breaks complex queries into parallel or sequential subtasks based on dependencies, (3) Complexity-based routing using five factors to make smart pre-execution decisions, and (4) Unified memory system combining short-term, long-term, and vector-based storage. Additionally, effGen unifies multiple agent protocols (MCP, A2A, ACP) for cross-protocol communication. Results on 13 benchmarks show effGen outperforms LangChain, AutoGen, and Smolagents with higher success rates, faster execution, and lower memory. Our results reveal that prompt optimization and complexity routing have complementary scaling behavior: optimization benefits SLMs more (11.2% gain at 1.5B vs 2.4% at 32B), while routing benefits large models more (3.6% at 1.5B vs 7.9% at 32B), providing consistent gains across all scales when combined. effGen (https://effgen.org/) is released under the MIT License, ensuring broad accessibility for research and commercial use. Our framework code is publicly available at https://github.com/ctrl-gaurav/effGen.
Abstract:Multimodal foundation models that integrate audio, vision, and language achieve strong performance on reasoning and generation tasks, yet their robustness to adversarial manipulation remains poorly understood. We study a realistic and underexplored threat model: untargeted, audio-only adversarial attacks on trimodal audio-video-language models. We analyze six complementary attack objectives that target different stages of multimodal processing, including audio encoder representations, cross-modal attention, hidden states, and output likelihoods. Across three state-of-the-art models and multiple benchmarks, we show that audio-only perturbations can induce severe multimodal failures, achieving up to 96% attack success rate. We further show that attacks can be successful at low perceptual distortions (LPIPS <= 0.08, SI-SNR >= 0) and benefit more from extended optimization than increased data scale. Transferability across models and encoders remains limited, while speech recognition systems such as Whisper primarily respond to perturbation magnitude, achieving >97% attack success under severe distortion. These results expose a previously overlooked single-modality attack surface in multimodal systems and motivate defenses that enforce cross-modal consistency.
Abstract:There has been a lot of work in question generation where different methods to provide target answers as input, have been employed. This experimentation has been mostly carried out for RNN based models. We use three different methods and their combinations for incorporating answer information and explore their effect on several automatic evaluation metrics. The methods that are used are answer prompting, using a custom product method using answer embeddings and encoder outputs, choosing sentences from the input paragraph that have answer related information, and using a separate cross-attention attention block in the decoder which attends to the answer. We observe that answer prompting without any additional modes obtains the best scores across rouge, meteor scores. Additionally, we use a custom metric to calculate how many of the generated questions have the same answer, as the answer which is used to generate them.