White matter tract microstructure has been shown to influence neuropsychological scores of cognitive performance. However, prediction of these scores from white matter tract data has not been attempted. In this paper, we propose a deep-learning-based framework for neuropsychological score prediction using microstructure measurements estimated from diffusion magnetic resonance imaging (dMRI) tractography, focusing on predicting performance on a receptive vocabulary assessment task based on a critical fiber tract for language, the arcuate fasciculus (AF). We directly utilize information from all points in a fiber tract, without the need to average data along the fiber as is traditionally required by diffusion MRI tractometry methods. Specifically, we represent the AF as a point cloud with microstructure measurements at each point, enabling adoption of point-based neural networks. We improve prediction performance with the proposed Paired-Siamese Loss that utilizes information about differences between continuous neuropsychological scores. Finally, we propose a Critical Region Localization (CRL) algorithm to localize informative anatomical regions containing points with strong contributions to the prediction results. Our method is evaluated on data from 806 subjects from the Human Connectome Project dataset. Results demonstrate superior neuropsychological score prediction performance compared to baseline methods. We discover that critical regions in the AF are strikingly consistent across subjects, with the highest number of strongly contributing points located in frontal cortical regions (i.e., the rostral middle frontal, pars opercularis, and pars triangularis), which are strongly implicated as critical areas for language processes.