This work presents 3DPE, a practical tool that can efficiently edit a face image following given prompts, like reference images or text descriptions, in the 3D-aware manner. To this end, a lightweight module is distilled from a 3D portrait generator and a text-to-image model, which provide prior knowledge of face geometry and open-vocabulary editing capability, respectively. Such a design brings two compelling advantages over existing approaches. First, our system achieves real-time editing with a feedforward network (i.e., ~0.04s per image), over 100x faster than the second competitor. Second, thanks to the powerful priors, our module could focus on the learning of editing-related variations, such that it manages to handle various types of editing simultaneously in the training phase and further supports fast adaptation to user-specified novel types of editing during inference (e.g., with ~5min fine-tuning per case). The code, the model, and the interface will be made publicly available to facilitate future research.