Abstract:Scanning electron microscopy (SEM) has been widely utilized in the field of materials science due to its significant advantages, such as large depth of field, wide field of view, and excellent stereoscopic imaging. However, at high magnification, the limited imaging range in SEM cannot cover all the possible inhomogeneous microstructures. In this research, we propose a novel approach for generating high-resolution SEM images across multiple scales, enabling a single image to capture physical dimensions at the centimeter level while preserving submicron-level details. We adopted the SEM imaging on the AlCoCrFeNi2.1 eutectic high entropy alloy (EHEA) as an example. SEM videos and image stitching are combined to fulfill this goal, and the video-extracted low-definition (LD) images are clarified by a well-trained denoising model. Furthermore, we segment the macroscopic image of the EHEA, and area of various microstructures are distinguished. Combining the segmentation results and hardness experiments, we found that the hardness is positively correlated with the content of body-centered cubic (BCC) phase, negatively correlated with the lamella width, and the relationship with the proportion of lamellar structures was not significant. Our work provides a feasible solution to generate macroscopic images based on SEMs for further analysis of the correlations between the microstructures and spatial distribution, and can be widely applied to other types of microscope.
Abstract:Deep learning models are increasingly deployed to edge devices for real-time applications. To ensure stable service quality across diverse edge environments, it is highly desirable to generate tailored model architectures for different conditions. However, conventional pre-deployment model generation approaches are not satisfactory due to the difficulty of handling the diversity of edge environments and the demand for edge information. In this paper, we propose to adapt the model architecture after deployment in the target environment, where the model quality can be precisely measured and private edge data can be retained. To achieve efficient and effective edge model generation, we introduce a pretraining-assisted on-cloud model elastification method and an edge-friendly on-device architecture search method. Model elastification generates a high-quality search space of model architectures with the guidance of a developer-specified oracle model. Each subnet in the space is a valid model with different environment affinity, and each device efficiently finds and maintains the most suitable subnet based on a series of edge-tailored optimizations. Extensive experiments on various edge devices demonstrate that our approach is able to achieve significantly better accuracy-latency tradeoffs (e.g. 46.74\% higher on average accuracy with a 60\% latency budget) than strong baselines with minimal overhead (13 GPU hours in the cloud and 2 minutes on the edge server).