Abstract:Many studies have concentrated on constructing supervised models utilizing paired datasets for image denoising, which proves to be expensive and time-consuming. Current self-supervised and unsupervised approaches typically rely on blind-spot networks or sub-image pairs sampling, resulting in pixel information loss and destruction of detailed structural information, thereby significantly constraining the efficacy of such methods. In this paper, we introduce Prompt-SID, a prompt-learning-based single image denoising framework that emphasizes preserving of structural details. This approach is trained in a self-supervised manner using downsampled image pairs. It captures original-scale image information through structural encoding and integrates this prompt into the denoiser. To achieve this, we propose a structural representation generation model based on the latent diffusion process and design a structural attention module within the transformer-based denoiser architecture to decode the prompt. Additionally, we introduce a scale replay training mechanism, which effectively mitigates the scale gap from images of different resolutions. We conduct comprehensive experiments on synthetic, real-world, and fluorescence imaging datasets, showcasing the remarkable effectiveness of Prompt-SID.
Abstract:Self-supervised video denoising aims to remove noise from videos without relying on ground truth data, leveraging the video itself to recover clean frames. Existing methods often rely on simplistic feature stacking or apply optical flow without thorough analysis. This results in suboptimal utilization of both inter-frame and intra-frame information, and it also neglects the potential of optical flow alignment under self-supervised conditions, leading to biased and insufficient denoising outcomes. To this end, we first explore the practicality of optical flow in the self-supervised setting and introduce a SpatioTemporal Blind-spot Network (STBN) for global frame feature utilization. In the temporal domain, we utilize bidirectional blind-spot feature propagation through the proposed blind-spot alignment block to ensure accurate temporal alignment and effectively capture long-range dependencies. In the spatial domain, we introduce the spatial receptive field expansion module, which enhances the receptive field and improves global perception capabilities. Additionally, to reduce the sensitivity of optical flow estimation to noise, we propose an unsupervised optical flow distillation mechanism that refines fine-grained inter-frame interactions during optical flow alignment. Our method demonstrates superior performance across both synthetic and real-world video denoising datasets. The source code is publicly available at https://github.com/ZKCCZ/STBN.