Abstract:Cardiovascular disease (CVD) is a leading cause of death globally, necessitating precise forecasting models for monitoring vital signs like heart rate, blood pressure, and ECG. Traditional models, such as ARIMA and Prophet, are limited by their need for manual parameter tuning and challenges in handling noisy, sparse, and highly variable medical data. This study investigates advanced deep learning models, including LSTM, and transformer-based architectures, for predicting heart rate time series from the MIT-BIH Database. Results demonstrate that deep learning models, particularly PatchTST, significantly outperform traditional models across multiple metrics, capturing complex patterns and dependencies more effectively. This research underscores the potential of deep learning to enhance patient monitoring and CVD management, suggesting substantial clinical benefits. Future work should extend these findings to larger, more diverse datasets and real-world clinical applications to further validate and optimize model performance.
Abstract:Domain adaptation is pivotal for enabling deep learning models to generalize across diverse domains, a task complicated by variations in presentation and cognitive nuances. In this paper, we introduce AD-Aligning, a novel approach that combines adversarial training with source-target domain alignment to enhance generalization capabilities. By pretraining with Coral loss and standard loss, AD-Aligning aligns target domain statistics with those of the pretrained encoder, preserving robustness while accommodating domain shifts. Through extensive experiments on diverse datasets and domain shift scenarios, including noise-induced shifts and cognitive domain adaptation tasks, we demonstrate AD-Aligning's superior performance compared to existing methods such as Deep Coral and ADDA. Our findings highlight AD-Aligning's ability to emulate the nuanced cognitive processes inherent in human perception, making it a promising solution for real-world applications requiring adaptable and robust domain adaptation strategies.