Abstract:In this paper, we present our solution for the WSDM2023 Toloka Visual Question Answering Challenge. Inspired by the application of multimodal pre-trained models to various downstream tasks(e.g., visual question answering, visual grounding, and cross-modal retrieval), we approached this competition as a visual grounding task, where the input is an image and a question, guiding the model to answer the question and display the answer as a bounding box on the image. We designed a three-stage solution for this task. Specifically, we used the visual-language pre-trained model OFA as the foundation. In the first stage, we constructed a large-scale synthetic dataset similar to the competition dataset and coarse-tuned the model to learn generalized semantic information. In the second stage, we treated the competition task as a visual grounding task, loaded the weights from the previous stage, and continued to fine-tune the model on the competition dataset, transferring the semantic information learned in the first stage to the competition task. Finally, we designed a bounding box matching and replacing post-processing strategy to correct the model's prediction results. Our team achieved a score of 76.342 on the final leaderboard, ranking second.
Abstract:Due to the notorious modality imbalance problem, multimodal learning (MML) leads to the phenomenon of optimization imbalance, thus struggling to achieve satisfactory performance. Recently, some representative methods have been proposed to boost the performance, mainly focusing on adaptive adjusting the optimization of each modality to rebalance the learning speed of dominant and non-dominant modalities. To better facilitate the interaction of model information in multimodal learning, in this paper, we propose a novel multimodal learning method, called modal-aware interactive enhancement (MIE). Specifically, we first utilize an optimization strategy based on sharpness aware minimization (SAM) to smooth the learning objective during the forward phase. Then, with the help of the geometry property of SAM, we propose a gradient modification strategy to impose the influence between different modalities during the backward phase. Therefore, we can improve the generalization ability and alleviate the modality forgetting phenomenon simultaneously for multimodal learning. Extensive experiments on widely used datasets demonstrate that our proposed method can outperform various state-of-the-art baselines to achieve the best performance.
Abstract:This report provide a detailed description of the method that we explored and proposed in the WECIA Emotion Prediction Competition (EPC), which predicts a person's emotion through an artistic work with a comment. The dataset of this competition is ArtELingo, designed to encourage work on diversity across languages and cultures. The dataset has two main challenges, namely modal imbalance problem and language-cultural differences problem. In order to address this issue, we propose a simple yet effective approach called single-multi modal with Emotion-Cultural specific prompt(ECSP), which focuses on using the single modal message to enhance the performance of multimodal models and a well-designed prompt to reduce cultural differences problem. To clarify, our approach contains two main blocks: (1)XLM-R\cite{conneau2019unsupervised} based unimodal model and X$^2$-VLM\cite{zeng2022x} based multimodal model (2) Emotion-Cultural specific prompt. Our approach ranked first in the final test with a score of 0.627.