Abstract:Cartoon face detection is a more challenging task than human face detection due to many difficult scenarios is involved. Aiming at the characteristics of cartoon faces, such as huge differences within the intra-faces, in this paper, we propose an asymmetric cartoon face detector, named ACFD. Specifically, it consists of the following modules: a novel backbone VoVNetV3 comprised of several asymmetric one-shot aggregation modules (AOSA), asymmetric bi-directional feature pyramid network (ABi-FPN), dynamic anchor match strategy (DAM) and the corresponding margin binary classification loss (MBC). In particular, to generate features with diverse receptive fields, multi-scale pyramid features are extracted by VoVNetV3, and then fused and enhanced simultaneously by ABi-FPN for handling the faces in some extreme poses and have disparate aspect ratios. Besides, DAM is used to match enough high-quality anchors for each face, and MBC is for the strong power of discrimination. With the effectiveness of these modules, our ACFD achieves the 1st place on the detection track of 2020 iCartoon Face Challenge under the constraints of model size 200MB, inference time 50ms per image, and without any pretrained models.
Abstract:Generating temporal action proposals remains a very challenging problem, where the main issue lies in predicting precise temporal proposal boundaries and reliable action confidence in long and untrimmed real-world videos. In this paper, we propose an efficient and unified framework to generate temporal action proposals named Dense Boundary Generator (DBG), which draws inspiration from boundary-sensitive methods and implements boundary classification and action completeness regression for densely distributed proposals. In particular, the DBG consists of two modules: Temporal boundary classification (TBC) and Action-aware completeness regression (ACR). The TBC aims to provide two temporal boundary confidence maps by low-level two-stream features, while the ACR is designed to generate an action completeness score map by high-level action-aware features. Moreover, we introduce a dual stream BaseNet (DSB) to encode RGB and optical flow information, which helps to capture discriminative boundary and actionness features. Extensive experiments on popular benchmarks ActivityNet-1.3 and THUMOS14 demonstrate the superiority of DBG over the state-of-the-art proposal generator (e.g., MGG and BMN). Our code will be made available upon publication.