Abstract:Graph Neural Networks (GNNs) have been widely employed for semi-supervised node classification tasks on graphs. However, the performance of GNNs is significantly affected by label noise, that is, a small amount of incorrectly labeled nodes can substantially misguide model training. Mainstream solutions define node classification with label noise (NCLN) as a reliable labeling task, often introducing node similarity with quadratic computational complexity to more accurately assess label reliability. To this end, in this paper, we introduce the Label Ensemble Graph Neural Network (LEGNN), a lower complexity method for robust GNNs training against label noise. LEGNN reframes NCLN as a label ensemble task, gathering informative multiple labels instead of constructing a single reliable label, avoiding high-complexity computations for reliability assessment. Specifically, LEGNN conducts a two-step process: bootstrapping neighboring contexts and robust learning with gathered multiple labels. In the former step, we apply random neighbor masks for each node and gather the predicted labels as a high-probability label set. This mitigates the impact of inaccurately labeled neighbors and diversifies the label set. In the latter step, we utilize a partial label learning based strategy to aggregate the high-probability label information for model training. Additionally, we symmetrically gather a low-probability label set to counteract potential noise from the bootstrapped high-probability label set. Extensive experiments on six datasets demonstrate that LEGNN achieves outstanding performance while ensuring efficiency. Moreover, it exhibits good scalability on dataset with over one hundred thousand nodes and one million edges.
Abstract:Traffic prediction is a crucial topic because of its broad scope of applications in the transportation domain. Recently, various studies have achieved promising results. However, most studies assume the prediction locations have complete or at least partial historical records and cannot be extended to non-historical recorded locations. In real-life scenarios, the deployment of sensors could be limited due to budget limitations and installation availability, which makes most current models not applicable. Though few pieces of literature tried to impute traffic states at the missing locations, these methods need the data simultaneously observed at the locations with sensors, making them not applicable to prediction tasks. Another drawback is the lack of measurement of uncertainty in prediction, making prior works unsuitable for risk-sensitive tasks or involving decision-making. To fill the gap, inspired by the previous inductive graph neural network, this work proposed an uncertainty-aware framework with the ability to 1) extend prediction to missing locations with no historical records and significantly extend spatial coverage of prediction locations while reducing deployment of sensors and 2) generate probabilistic prediction with uncertainty quantification to help the management of risk and decision making in the down-stream tasks. Through extensive experiments on real-life datasets, the result shows our method achieved promising results on prediction tasks, and the uncertainty quantification gives consistent results which highly correlated with the locations with and without historical data. We also show that our model could help support sensor deployment tasks in the transportation field to achieve higher accuracy with a limited sensor deployment budget.
Abstract:As the use of robotics becomes more widespread, the huge amount of vision data leads to a dramatic increase in data dimensionality. Although deep learning methods can effectively process these high-dimensional vision data. Due to the limitation of computational resources, some special scenarios still rely on traditional machine learning methods. However, these high-dimensional visual data lead to great challenges for traditional machine learning methods. Therefore, we propose a Lite Fireworks Algorithm with Fractal Dimension constraint for feature selection (LFWA+FD) and use it to solve the feature selection problem driven by robot vision. The "LFWA+FD" focuses on searching the ideal feature subset by simplifying the fireworks algorithm and constraining the dimensionality of selected features by fractal dimensionality, which in turn reduces the approximate features and reduces the noise in the original data to improve the accuracy of the model. The comparative experimental results of two publicly available datasets from UCI show that the proposed method can effectively select a subset of features useful for model inference and remove a large amount of noise noise present in the original data to improve the performance.