Abstract:In this paper, we focus on the challenging task of monocular 3D lane detection. Previous methods typically adopt inverse perspective mapping (IPM) to transform the Front-Viewed (FV) images or features into the Bird-Eye-Viewed (BEV) space for lane detection. However, IPM's dependence on flat ground assumption and context information loss in BEV representations lead to inaccurate 3D information estimation. Though efforts have been made to bypass BEV and directly predict 3D lanes from FV representations, their performances still fall behind BEV-based methods due to a lack of structured modeling of 3D lanes. In this paper, we propose a novel BEV-free method named Anchor3DLane++ which defines 3D lane anchors as structural representations and makes predictions directly from FV features. We also design a Prototype-based Adaptive Anchor Generation (PAAG) module to generate sample-adaptive sparse 3D anchors dynamically. In addition, an Equal-Width (EW) loss is developed to leverage the parallel property of lanes for regularization. Furthermore, camera-LiDAR fusion is also explored based on Anchor3DLane++ to leverage complementary information. Extensive experiments on three popular 3D lane detection benchmarks show that our Anchor3DLane++ outperforms previous state-of-the-art methods. Code is available at: https://github.com/tusen-ai/Anchor3DLane.
Abstract:Monocular 3D lane detection is a challenging task due to its lack of depth information. A popular solution to 3D lane detection is to first transform the front-viewed (FV) images or features into the bird-eye-view (BEV) space with inverse perspective mapping (IPM) and detect lanes from BEV features. However, the reliance of IPM on flat ground assumption and loss of context information makes it inaccurate to restore 3D information from BEV representations. An attempt has been made to get rid of BEV and predict 3D lanes from FV representations directly, while it still underperforms other BEV-based methods given its lack of structured representation for 3D lanes. In this paper, we define 3D lane anchors in the 3D space and propose a BEV-free method named Anchor3DLane to predict 3D lanes directly from FV representations. 3D lane anchors are projected to the FV features to extract their features which contain both good structural and context information to make accurate predictions. We further extend Anchor3DLane to the multi-frame setting to incorporate temporal information for performance improvement. In addition, we also develop a global optimization method that makes use of the equal-width property between lanes to reduce the lateral error of predictions. Extensive experiments on three popular 3D lane detection benchmarks show that our Anchor3DLane outperforms previous BEV-based methods and achieves state-of-the-art performances.