Abstract:Context-based offline meta-reinforcement learning (OMRL) methods have achieved appealing success by leveraging pre-collected offline datasets to develop task representations that guide policy learning. However, current context-based OMRL methods often introduce spurious correlations, where task components are incorrectly correlated due to confounders. These correlations can degrade policy performance when the confounders in the test task differ from those in the training task. To address this problem, we propose CausalCOMRL, a context-based OMRL method that integrates causal representation learning. This approach uncovers causal relationships among the task components and incorporates the causal relationships into task representations, enhancing the generalizability of RL agents. We further improve the distinction of task representations from different tasks by using mutual information optimization and contrastive learning. Utilizing these causal task representations, we employ SAC to optimize policies on meta-RL benchmarks. Experimental results show that CausalCOMRL achieves better performance than other methods on most benchmarks.
Abstract:This report describes the submitted system to the In-Car Multi-Channel Automatic Speech Recognition (ICMC-ASR) challenge, which considers the ASR task with multi-speaker overlapping and Mandarin accent dynamics in the ICMC case. We implement the front-end speaker diarization using the self-supervised learning representation based multi-speaker embedding and beamforming using the speaker position, respectively. For ASR, we employ an iterative pseudo-label generation method based on fusion model to obtain text labels of unsupervised data. To mitigate the impact of accent, an Accent-ASR framework is proposed, which captures pronunciation-related accent features at a fine-grained level and linguistic information at a coarse-grained level. On the ICMC-ASR eval set, the proposed system achieves a CER of 13.16% on track 1 and a cpCER of 21.48% on track 2, which significantly outperforms the official baseline system and obtains the first rank on both tracks.