Abstract:Graph similarity learning (GSL), also referred to as graph matching in many scenarios, is a fundamental problem in computer vision, pattern recognition, and graph learning. However, previous GSL methods assume that graphs are homogeneous and struggle to maintain their performance on heterogeneous graphs. To address this problem, this paper proposes a Heterogeneous Graph Matching Network (HeGMN), which is an end-to-end graph similarity learning framework composed of a two-tier matching mechanism. Firstly, a heterogeneous graph isomorphism network is proposed as the encoder, which reinvents graph isomorphism network for heterogeneous graphs by perceiving different semantic relationships during aggregation. Secondly, a graph-level and node-level matching modules are designed, both employing type-aligned matching principles. The former conducts graph-level matching by node type alignment, and the latter computes the interactions between the cross-graph nodes with the same type thus reducing noise interference and computational overhead. Finally, the graph-level and node-level matching features are combined and fed into fully connected layers for predicting graph similarity scores. In experiments, we propose a heterogeneous graph resampling method to construct heterogeneous graph pairs and define the corresponding heterogeneous graph edit distance, filling the gap in missing datasets. Extensive experiments demonstrate that HeGMN consistently achieves advanced performance on graph similarity prediction across all datasets.
Abstract:We focus on Maximum Inner Product Search (MIPS), which is an essential problem in many machine learning communities. Given a query, MIPS finds the most similar items with the maximum inner products. Methods for Nearest Neighbor Search (NNS) which is usually defined on metric space don't exhibit the satisfactory performance for MIPS problem since inner product is a non-metric function. However, inner products exhibit many good properties compared with metric functions, such as avoiding vanishing and exploding gradients. As a result, inner product is widely used in many recommendation systems, which makes efficient Maximum Inner Product Search a key for speeding up many recommendation systems. Graph based methods for NNS problem show the superiorities compared with other class methods. Each data point of the database is mapped to a node of the proximity graph. Nearest neighbor search in the database can be converted to route on the proximity graph to find the nearest neighbor for the query. This technique can be used to solve MIPS problem. Instead of searching the nearest neighbor for the query, we search the item with maximum inner product with query on the proximity graph. In this paper, we propose a reinforcement model to train an agent to search on the proximity graph automatically for MIPS problem if we lack the ground truths of training queries. If we know the ground truths of some training queries, our model can also utilize these ground truths by imitation learning to improve the agent's search ability. By experiments, we can see that our proposed mode which combines reinforcement learning with imitation learning shows the superiorities over the state-of-the-art methods
Abstract:News feed recommendation is an important web service. In recent years, pre-trained language models (PLMs) have been intensively applied to improve the recommendation quality. However, the utilization of these deep models is limited in many aspects, such as lack of explainability and being incompatible with the existing inverted index systems. Above all, the PLMs based recommenders are inefficient, as the encoding of user-side information will take huge computation costs. Although the computation can be accelerated with efficient transformers or distilled PLMs, it is still not enough to make timely recommendations for the active users, who are associated with super long news browsing histories. In this work, we tackle the efficient news recommendation problem from a distinctive perspective. Instead of relying on the entire input (i.e., the collection of news articles a user ever browsed), we argue that the user's interest can be fully captured merely with those representative keywords. Motivated by this, we propose GateFormer, where the input data is gated before feeding into transformers. The gating module is made personalized, lightweight and end-to-end learnable, such that it may perform accurate and efficient filtering of informative user input. GateFormer achieves highly impressive performances in experiments, where it notably outperforms the existing acceleration approaches in both accuracy and efficiency. We also surprisingly find that even with over 10-fold compression of the original input, GateFormer is still able to maintain on-par performances with the SOTA methods.