Abstract:Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning. However, delays in knowledge updates may cause them to reason incorrectly or produce harmful results. Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs by structurally organizing and connecting a wide range of entities and relations. Existing KG-based LLM reasoning methods only inject KGs' knowledge into prompts in a textual form, ignoring its structural information. Moreover, they mostly rely on close-source models or open-source models with large parameters, which poses challenges to high resource consumption. To address this, we propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF), which leverages the full potential of LLMs to tackle complex reasoning tasks in a parameter-efficient manner. Specifically, LightPROF follows a "Retrieve-Embed-Reason process", first accurately, and stably retrieving the corresponding reasoning graph from the KG through retrieval module. Next, through a Transformer-based Knowledge Adapter, it finely extracts and integrates factual and structural information from the KG, then maps this information to the LLM's token embedding space, creating an LLM-friendly prompt to be used by the LLM for the final reasoning. Additionally, LightPROF only requires training Knowledge Adapter and can be compatible with any open-source LLM. Extensive experiments on two public KGQA benchmarks demonstrate that LightPROF achieves superior performance with small-scale LLMs. Furthermore, LightPROF shows significant advantages in terms of input token count and reasoning time.
Abstract:Federated recommender systems have been crucially enhanced through data sharing and continuous model updates, attributed to the pervasive connectivity and distributed computing capabilities of Internet of Things (IoT) devices. Given the sensitivity of IoT data, transparent data processing in data sharing and model updates is paramount. However, existing methods fall short in tracing the flow of shared data and the evolution of model updates. Consequently, data sharing is vulnerable to exploitation by malicious entities, raising significant data privacy concerns, while excluding data sharing will result in sub-optimal recommendations. To mitigate these concerns, we present LIBERATE, a privacy-traceable federated recommender system. We design a blockchain-based traceability mechanism, ensuring data privacy during data sharing and model updates. We further enhance privacy protection by incorporating local differential privacy in user-server communication. Extensive evaluations with the real-world dataset corroborate LIBERATE's capabilities in ensuring data privacy during data sharing and model update while maintaining efficiency and performance. Results underscore blockchain-based traceability mechanism as a promising solution for privacy-preserving in federated recommender systems.