Abstract:Large-scale recommendation systems are characterized by their reliance on high cardinality, heterogeneous features and the need to handle tens of billions of user actions on a daily basis. Despite being trained on huge volume of data with thousands of features, most Deep Learning Recommendation Models (DLRMs) in industry fail to scale with compute. Inspired by success achieved by Transformers in language and vision domains, we revisit fundamental design choices in recommendation systems. We reformulate recommendation problems as sequential transduction tasks within a generative modeling framework (``Generative Recommenders''), and propose a new architecture, HSTU, designed for high cardinality, non-stationary streaming recommendation data. HSTU outperforms baselines over synthetic and public datasets by up to 65.8\% in NDCG, and is 5.3x to 15.2x faster than FlashAttention2-based Transformers on 8192 length sequences. HSTU-based Generative Recommenders, with 1.5 trillion parameters, improve metrics in online A/B tests by 12.4\% and have been deployed on multiple surfaces of a large internet platform with billions of users. More importantly, the model quality of Generative Recommenders empirically scales as a power-law of training compute across three orders of magnitude, up to GPT-3/LLaMa-2 scale, which reduces carbon footprint needed for future model developments, and further paves the way for the first foundational models in recommendations.
Abstract:Retrieval finds a small number of relevant candidates from a large corpus for information retrieval and recommendation applications. A key component of retrieval is to model (user, item) similarity, which is commonly represented as the dot product of two learned embeddings. This formulation permits efficient inference, commonly known as Maximum Inner Product Search (MIPS). Despite its popularity, dot products cannot capture complex user-item interactions, which are multifaceted and likely high rank. We hence examine non-dot-product retrieval settings on accelerators, and propose \textit{mixture of logits} (MoL), which models (user, item) similarity as an adaptive composition of elementary similarity functions. This new formulation is expressive, capable of modeling high rank (user, item) interactions, and further generalizes to the long tail. When combined with a hierarchical retrieval strategy, \textit{h-indexer}, we are able to scale up MoL to 100M corpus on a single GPU with latency comparable to MIPS baselines. On public datasets, our approach leads to uplifts of up to 77.3\% in hit rate (HR). Experiments on a large recommendation surface at Meta showed strong metric gains and reduced popularity bias, validating the proposed approach's performance and improved generalization.