Abstract:Semantic communication has emerged as a promising technology to break the Shannon limit by extracting the meaning of source data and sending relevant semantic information only. However, some mobile devices may have limited computation and storage resources, which renders it difficult to deploy and implement the resource-demanding deep learning based semantic encoder/decoder. To tackle this challenge, we propose in this paper a new semantic relay (SemRelay), which is equipped with a semantic receiver for assisting text transmission from a resource-abundant base station (BS) to a resource-constrained mobile device. Specifically, the SemRelay first decodes the semantic information sent by the BS (with a semantic transmitter) and then forwards it to the user by adopting conventional bit transmission, hence effectively improving the text transmission efficiency. We formulate an optimization problem to maximize the achievable (effective) bit rate by jointly designing the SemRelay placement and bandwidth allocation. Although this problem is non-convex and generally difficult to solve, we propose an efficient penalty-based algorithm to obtain a high-quality suboptimal solution. Numerical results show the close-to-optimal performance of the proposed algorithm as well as significant rate performance gain of the proposed SemRelay over conventional decode-and-forward relay.
Abstract:Semantic communication (SemCom) is an emerging technology that extracts useful meaning from data and sends only relevant semantic information. Thus, it has the great potential to improve the spectrum efficiency of conventional wireless systems with bit transmissions, especially in low signal-to-noise ratio (SNR) and small bandwidth regions. However, the existing works have mostly overlooked the constraints of mobile devices, which may not have sufficient capabilities to implement resource-demanding semantic encoder/decoder based on deep learning. To address this issue, we propose in this paper a new semantic relay (SemRelay), which is equipped with a semantic receiver to assist multiuser text transmissions. Specifically, the SemRelay decodes semantic information from a base station and forwards it to the users using conventional bit transmission, hence effectively improving text transmission efficiency. To study the multiuser resource allocation, we formulate an optimization problem to maximize the multiuser weighted sum-rate by jointly designing the SemRelay transmit power allocation and system bandwidth allocation. Although this problem is non-convex and hence challenging to solve, we propose an efficient algorithm to obtain its high-quality suboptimal solution by using the block coordinate descent method. Last, numerical results show the effectiveness of the proposed algorithm as well as superior performance of the proposed SemRelay over the conventional decode-and-forward (DF) relay, especially in small bandwidth region.