Semantic communication has emerged as a promising technology to break the Shannon limit by extracting the meaning of source data and sending relevant semantic information only. However, some mobile devices may have limited computation and storage resources, which renders it difficult to deploy and implement the resource-demanding deep learning based semantic encoder/decoder. To tackle this challenge, we propose in this paper a new semantic relay (SemRelay), which is equipped with a semantic receiver for assisting text transmission from a resource-abundant base station (BS) to a resource-constrained mobile device. Specifically, the SemRelay first decodes the semantic information sent by the BS (with a semantic transmitter) and then forwards it to the user by adopting conventional bit transmission, hence effectively improving the text transmission efficiency. We formulate an optimization problem to maximize the achievable (effective) bit rate by jointly designing the SemRelay placement and bandwidth allocation. Although this problem is non-convex and generally difficult to solve, we propose an efficient penalty-based algorithm to obtain a high-quality suboptimal solution. Numerical results show the close-to-optimal performance of the proposed algorithm as well as significant rate performance gain of the proposed SemRelay over conventional decode-and-forward relay.