Abstract:Different from the traditional semi-supervised learning paradigm that is constrained by the close-world assumption, Generalized Category Discovery (GCD) presumes that the unlabeled dataset contains new categories not appearing in the labeled set, and aims to not only classify old categories but also discover new categories in the unlabeled data. Existing studies on GCD typically devote to transferring the general knowledge from the self-supervised pretrained model to the target GCD task via some fine-tuning strategies, such as partial tuning and prompt learning. Nevertheless, these fine-tuning methods fail to make a sound balance between the generalization capacity of pretrained backbone and the adaptability to the GCD task. To fill this gap, in this paper, we propose a novel adapter-tuning-based method named AdaptGCD, which is the first work to introduce the adapter tuning into the GCD task and provides some key insights expected to enlighten future research. Furthermore, considering the discrepancy of supervision information between the old and new classes, a multi-expert adapter structure equipped with a route assignment constraint is elaborately devised, such that the data from old and new classes are separated into different expert groups. Extensive experiments are conducted on 7 widely-used datasets. The remarkable improvements in performance highlight the effectiveness of our proposals.
Abstract:Ensemble reinforcement learning (RL) aims to mitigate instability in Q-learning and to learn a robust policy, which introduces multiple value and policy functions. In this paper, we consider finding a novel but simple ensemble Deep RL algorithm to solve the resource consumption issue. Specifically, we consider integrating multiple models into a single model. To this end, we propose the \underline{M}inimalist \underline{E}nsemble \underline{P}olicy \underline{G}radient framework (MEPG), which introduces minimalist ensemble consistent Bellman update. And we find one value network is sufficient in our framework. Moreover, we theoretically show that the policy evaluation phase in the MEPG is mathematically equivalent to a deep Gaussian Process. To verify the effectiveness of the MEPG framework, we conduct experiments on the gym simulator, which show that the MEPG framework matches or outperforms the state-of-the-art ensemble methods and model-free methods without additional computational resource costs.