Abstract:In Standard Chinese, Tone 3 (the dipping tone) becomes Tone 2 (rising tone) when followed by another Tone 3. Previous studies have noted that this sandhi process may be incomplete, in the sense that the assimilated Tone 3 is still distinct from a true Tone 2. While Mandarin Tone 3 sandhi is widely studied using carefully controlled laboratory speech (Xu, 1997) and more formal registers of Beijing Mandarin (Yuan and Chen, 2014), less is known about its realization in spontaneous speech, and about the effect of contextual factors on tonal realization. The present study investigates the pitch contours of two-character words with T2-T3 and T3-T3 tone patterns in spontaneous Taiwan Mandarin conversations. Our analysis makes use of the Generative Additive Mixed Model (GAMM, Wood, 2017) to examine fundamental frequency (f0) contours as a function of normalized time. We consider various factors known to influence pitch contours, including gender, speaking rate, speaker, neighboring tones, word position, bigram probability, and also novel predictors, word and word sense (Chuang et al., 2024). Our analyses revealed that in spontaneous Taiwan Mandarin, T3-T3 words become indistinguishable from T2-T3 words, indicating complete sandhi, once the strong effect of word (or word sense) is taken into account. For our data, the shape of f0 contours is not co-determined by word frequency. In contrast, the effect of word meaning on f0 contours is robust, as strong as the effect of adjacent tones, and is present for both T2-T3 and T3-T3 words.
Abstract:In this work, we aim at an important but less explored problem of a simple yet effective backbone specific for cross-view geo-localization task. Existing methods for cross-view geo-localization tasks are frequently characterized by 1) complicated methodologies, 2) GPU-consuming computations, and 3) a stringent assumption that aerial and ground images are centrally or orientation aligned. To address the above three challenges for cross-view image matching, we propose a new backbone network, named Simple Attention-based Image Geo-localization network (SAIG). The proposed SAIG effectively represents long-range interactions among patches as well as cross-view correspondence with multi-head self-attention layers. The "narrow-deep" architecture of our SAIG improves the feature richness without degradation in performance, while its shallow and effective convolutional stem preserves the locality, eliminating the loss of patchify boundary information. Our SAIG achieves state-of-the-art results on cross-view geo-localization, while being far simpler than previous works. Furthermore, with only 15.9% of the model parameters and half of the output dimension compared to the state-of-the-art, the SAIG adapts well across multiple cross-view datasets without employing any well-designed feature aggregation modules or feature alignment algorithms. In addition, our SAIG attains competitive scores on image retrieval benchmarks, further demonstrating its generalizability. As a backbone network, our SAIG is both easy to follow and computationally lightweight, which is meaningful in practical scenario. Moreover, we propose a simple Spatial-Mixed feature aggregation moDule (SMD) that can mix and project spatial information into a low-dimensional space to generate feature descriptors... (The code is available at https://github.com/yanghongji2007/SAIG)
Abstract:Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased spectral efficiency. Cooperative NOMA is able to further improve the communication reliability of users under poor channel conditions. However, the conventional system design suffers from several inherent limitations and is not optimized from the bit error rate (BER) perspective. In this paper, we develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL). We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner. On this basis, we construct multiple loss functions to quantify the BER performance and propose a novel multi-task oriented two-stage training method to solve the end-to-end training problem in a self-supervised manner. The learning mechanism of each DNN module is then analyzed based on information theory, offering insights into the proposed DNN architecture and its corresponding training method. We also adapt the proposed scheme to handle the power allocation (PA) mismatch between training and inference and incorporate it with channel coding to combat signal deterioration. Simulation results verify its advantages over orthogonal multiple access (OMA) and the conventional cooperative NOMA scheme in various scenarios.