Abstract:Most existing super-resolution methods and datasets have been developed to improve the image quality in well-lighted conditions. However, these methods do not work well in real-world low-light conditions as the images captured in such conditions lose most important information and contain significant unknown noises. To solve this problem, we propose a SRRIIE dataset with an efficient conditional diffusion probabilistic models-based method. The proposed dataset contains 4800 paired low-high quality images. To ensure that the dataset are able to model the real-world image degradation in low-illumination environments, we capture images using an ILDC camera and an optical zoom lens with exposure levels ranging from -6 EV to 0 EV and ISO levels ranging from 50 to 12800. We comprehensively evaluate with various reconstruction and perceptual metrics and demonstrate the practicabilities of the SRRIIE dataset for deep learning-based methods. We show that most existing methods are less effective in preserving the structures and sharpness of restored images from complicated noises. To overcome this problem, we revise the condition for Raw sensor data and propose a novel time-melding condition for diffusion probabilistic model. Comprehensive quantitative and qualitative experimental results on the real-world benchmark datasets demonstrate the feasibility and effectivenesses of the proposed conditional diffusion probabilistic model on Raw sensor data. Code and dataset will be available at https://github.com/Yaofang-Liu/Super-Resolving
Abstract:Video restoration task aims to recover high-quality videos from low-quality observations. This contains various important sub-tasks, such as video denoising, deblurring and low-light enhancement, since video often faces different types of degradation, such as blur, low light, and noise. Even worse, these kinds of degradation could happen simultaneously when taking videos in extreme environments. This poses significant challenges if one wants to remove these artifacts at the same time. In this paper, to the best of our knowledge, we are the first to propose an efficient end-to-end video transformer approach for the joint task of video deblurring, low-light enhancement, and denoising. This work builds a novel multi-tier transformer where each tier uses a different level of degraded video as a target to learn the features of video effectively. Moreover, we carefully design a new tier-to-tier feature fusion scheme to learn video features incrementally and accelerate the training process with a suitable adaptive weighting scheme. We also provide a new Multiscene-Lowlight-Blur-Noise (MLBN) dataset, which is generated according to the characteristics of the joint task based on the RealBlur dataset and YouTube videos to simulate realistic scenes as far as possible. We have conducted extensive experiments, compared with many previous state-of-the-art methods, to show the effectiveness of our approach clearly.