Abstract:We propose a novel test-time optimization approach for efficiently and robustly tracking any pixel at any time in a video. The latest state-of-the-art optimization-based tracking technique, OmniMotion, requires a prohibitively long optimization time, rendering it impractical for downstream applications. OmniMotion is sensitive to the choice of random seeds, leading to unstable convergence. To improve efficiency and robustness, we introduce a novel invertible deformation network, CaDeX++, which factorizes the function representation into a local spatial-temporal feature grid and enhances the expressivity of the coupling blocks with non-linear functions. While CaDeX++ incorporates a stronger geometric bias within its architectural design, it also takes advantage of the inductive bias provided by the vision foundation models. Our system utilizes monocular depth estimation to represent scene geometry and enhances the objective by incorporating DINOv2 long-term semantics to regulate the optimization process. Our experiments demonstrate a substantial improvement in training speed (more than \textbf{10 times} faster), robustness, and accuracy in tracking over the SoTA optimization-based method OmniMotion.
Abstract:We present a novel approach to interactive 3D object perception for robots. Unlike previous perception algorithms that rely on known object models or a large amount of annotated training data, we propose a poking-based approach that automatically discovers and reconstructs 3D objects. The poking process not only enables the robot to discover unseen 3D objects but also produces multi-view observations for 3D reconstruction of the objects. The reconstructed objects are then memorized by neural networks with regular supervised learning and can be recognized in new test images. The experiments on real-world data show that our approach could unsupervisedly discover and reconstruct unseen 3D objects with high quality, and facilitate real-world applications such as robotic grasping. The code and supplementary materials are available at the project page: https://zju3dv.github.io/poking_perception.