Abstract:A novel framework is proposed to incrementally collect landmark-based graph memory and use the collected memory for image goal navigation. Given a target image to search, an embodied robot utilizes semantic memory to find the target in an unknown environment. % The semantic graph memory is collected from a panoramic observation of an RGB-D camera without knowing the robot's pose. In this paper, we present a topological semantic graph memory (TSGM), which consists of (1) a graph builder that takes the observed RGB-D image to construct a topological semantic graph, (2) a cross graph mixer module that takes the collected nodes to get contextual information, and (3) a memory decoder that takes the contextual memory as an input to find an action to the target. On the task of image goal navigation, TSGM significantly outperforms competitive baselines by +5.0-9.0% on the success rate and +7.0-23.5% on SPL, which means that the TSGM finds efficient paths. Additionally, we demonstrate our method on a mobile robot in real-world image goal scenarios.
Abstract:In this paper, we propose a generative model which learns the relationship between language and human action in order to generate a human action sequence given a sentence describing human behavior. The proposed generative model is a generative adversarial network (GAN), which is based on the sequence to sequence (SEQ2SEQ) model. Using the proposed generative network, we can synthesize various actions for a robot or a virtual agent using a text encoder recurrent neural network (RNN) and an action decoder RNN. The proposed generative network is trained from 29,770 pairs of actions and sentence annotations extracted from MSR-Video-to-Text (MSR-VTT), a large-scale video dataset. We demonstrate that the network can generate human-like actions which can be transferred to a Baxter robot, such that the robot performs an action based on a provided sentence. Results show that the proposed generative network correctly models the relationship between language and action and can generate a diverse set of actions from the same sentence.