Abstract:Retrieval-augmented generation (RAG) is widely used to ground Large Language Models (LLMs) for multi-hop question answering. Recent work mainly focused on improving answer accuracy via fine-tuning and structured or reinforcement-based optimization. However, reliable reasoning in response generation faces three challenges: 1) Reasoning Collapse. Reasoning in multi-hop QA is inherently complex due to multi-hop composition and is further destabilized by noisy retrieval. 2) Reasoning-answer inconsistency. Due to the intrinsic uncertainty of LLM generation and exposure to evidence--distractor mixtures, models may produce correct answers that are not faithfully supported by their intermediate reasoning or evidence. 3) Loss of format control. Traditional chain-of-thought generation often deviates from required structured output formats, leading to incomplete or malformed structured content. To address these challenges, we propose CRAFT (Calibrated Reasoning with Answer-Faithful Traces), a Group Relative Policy Optimization (GRPO) based reinforcement learning framework that trains models to perform faithful reasoning during response generation. CRAFT employs dual reward mechanisms to optimize multi-hop reasoning: deterministic rewards ensure structural correctness while judge-based rewards verify semantic faithfulness. This optimization framework supports controllable trace variants that enable systematic analysis of how structure and scale affect reasoning performance and faithfulness. Experiments on three multi-hop QA benchmarks show that CRAFT improves both answer accuracy and reasoning faithfulness across model scales, with the CRAFT 7B model achieving competitive performance with closed-source LLMs across multiple reasoning trace settings.
Abstract:In recent years, diffusion models have achieved remarkable success in various domains of artificial intelligence, such as image synthesis, super-resolution, and 3D molecule generation. However, the application of diffusion models in graph learning has received relatively little attention. In this paper, we address this gap by investigating the use of diffusion models for unsupervised graph representation learning. We begin by identifying the anisotropic structures of graphs and a crucial limitation of the vanilla forward diffusion process in learning anisotropic structures. This process relies on continuously adding an isotropic Gaussian noise to the data, which may convert the anisotropic signals to noise too quickly. This rapid conversion hampers the training of denoising neural networks and impedes the acquisition of semantically meaningful representations in the reverse process. To address this challenge, we propose a new class of models called {\it directional diffusion models}. These models incorporate data-dependent, anisotropic, and directional noises in the forward diffusion process. To assess the efficacy of our proposed models, we conduct extensive experiments on 12 publicly available datasets, focusing on two distinct graph representation learning tasks. The experimental results demonstrate the superiority of our models over state-of-the-art baselines, indicating their effectiveness in capturing meaningful graph representations. Our studies not only provide valuable insights into the forward process of diffusion models but also highlight the wide-ranging potential of these models for various graph-related tasks.