Abstract:Techniques for detecting mirrors from static images have witnessed rapid growth in recent years. However, these methods detect mirrors from single input images. Detecting mirrors from video requires further consideration of temporal consistency between frames. We observe that humans can recognize mirror candidates, from just one or two frames, based on their appearance (e.g. shape, color). However, to ensure that the candidate is indeed a mirror (not a picture or a window), we often need to observe more frames for a global view. This observation motivates us to detect mirrors by fusing appearance features extracted from a short-term attention module and context information extracted from a long-term attention module. To evaluate the performance, we build a challenging benchmark dataset of 19,255 frames from 281 videos. Experimental results demonstrate that our method achieves state-of-the-art performance on the benchmark dataset.
Abstract:Objects that undergo non-rigid deformation are common in the real world. A typical and challenging example is the human faces. While various techniques have been developed for deformable shape registration and classification, benchmarks with detailed labels and landmarks suitable for evaluating such techniques are still limited. In this paper, we present a novel facial dynamic dataset HDFD which addresses the gap of existing datasets, including 4D funny faces with substantial non-isometric deformation, and 4D visual-audio faces of spoken phrases in a minority language (Welsh). Both datasets are captured from 21 participants. The sequences are manually landmarked, with the spoken phrases further rated by a Welsh expert for level of fluency. These are useful for quantitative evaluation of both registration and classification tasks. We further develop a methodology to evaluate several recent non-rigid surface registration techniques, using our dynamic sequences as test cases. The study demonstrates the significance and usefulness of our new dataset --- a challenging benchmark dataset for future techniques.