Abstract:Existing deepfake analysis methods are primarily based on discriminative models, which significantly limit their application scenarios. This paper aims to explore interactive deepfake analysis by performing instruction tuning on multi-modal large language models (MLLMs). This will face challenges such as the lack of datasets and benchmarks, and low training efficiency. To address these issues, we introduce (1) a GPT-assisted data construction process resulting in an instruction-following dataset called DFA-Instruct, (2) a benchmark named DFA-Bench, designed to comprehensively evaluate the capabilities of MLLMs in deepfake detection, deepfake classification, and artifact description, and (3) construct an interactive deepfake analysis system called DFA-GPT, as a strong baseline for the community, with the Low-Rank Adaptation (LoRA) module. The dataset and code will be made available at https://github.com/lxq1000/DFA-Instruct to facilitate further research.
Abstract:Video Internet of Things (VIoT) has shown full potential in collecting an unprecedented volume of video data. Learning to schedule perceiving models and analyzing the collected videos intelligently will be potential sparks for VIoT. In this paper, to address the challenges posed by the fine-grained and interrelated vision tool usage of VIoT, we build VIoTGPT, the framework based on LLMs to correctly interact with humans, query knowledge videos, and invoke vision models to accomplish complicated tasks. To support VIoTGPT and related future works, we meticulously crafted the training dataset and established benchmarks involving 11 representative vision models across three categories based on semi-automatic annotations. To guide LLM to act as the intelligent agent towards intelligent VIoT, we resort to ReAct instruction tuning based on the collected VIoT dataset to learn the tool capability. Quantitative and qualitative experimental results and analyses demonstrate the effectiveness of VIoTGPT.