Abstract:This paper addresses the optimization of scheduling for workers at a logistics depot using a combination of genetic algorithm and simulated annealing algorithm. The efficient scheduling of permanent and temporary workers is crucial for optimizing the efficiency of the logistics depot while minimizing labor usage. The study begins by establishing a 0-1 integer linear programming model, with decision variables determining the scheduling of permanent and temporary workers for each time slot on a given day. The objective function aims to minimize person-days, while constraints ensure fulfillment of hourly labor requirements, limit workers to one time slot per day, cap consecutive working days for permanent workers, and maintain non-negativity and integer constraints. The model is then solved using genetic algorithms and simulated annealing. Results indicate that, for this problem, genetic algorithms outperform simulated annealing in terms of solution quality. The optimal solution reveals a minimum of 29857 person-days.
Abstract:Non-signalized intersection is a typical and common scenario for connected and automated vehicles (CAVs). How to balance safety and efficiency remains difficult for researchers. To improve the original Responsibility Sensitive Safety (RSS) driving strategy on the non-signalized intersection, we propose a new strategy in this paper, based on right-of-way assignment (RWA). The performances of RSS strategy, cooperative driving strategy, and RWA based strategy are tested and compared. Testing results indicate that our strategy yields better traffic efficiency than RSS strategy, but not satisfying as the cooperative driving strategy due to the limited range of communication and the lack of long-term planning. However, our new strategy requires much fewer communication costs among vehicles.