Abstract:With the rapid development of drone technology, accurate detection of Unmanned Aerial Vehicles (UAVs) has become essential for applications such as surveillance, security, and airspace management. In this paper, we propose a novel trajectory-guided method, the Patch Intensity Convergence (PIC) technique, which generates high-fidelity bounding boxes for UAV detection tasks and no need for the effort required for labeling. The PIC technique forms the foundation for developing UAVDB, a database explicitly created for UAV detection. Unlike existing datasets, which often use low-resolution footage or focus on UAVs in simple backgrounds, UAVDB employs high-resolution video to capture UAVs at various scales, ranging from hundreds of pixels to nearly single-digit sizes. This broad-scale variation enables comprehensive evaluation of detection algorithms across different UAV sizes and distances. Applying the PIC technique, we can also efficiently generate detection datasets from trajectory or positional data, even without size information. We extensively benchmark UAVDB using YOLOv8 series detectors, offering a detailed performance analysis. Our findings highlight UAVDB's potential as a vital database for advancing UAV detection, particularly in high-resolution and long-distance tracking scenarios.
Abstract:Automated data labeling techniques are crucial for accelerating the development of deep learning models, particularly in complex medical imaging applications. However, ensuring accuracy and efficiency remains challenging. This paper presents iterative refinement strategies for automated data labeling in facial landmark diagnosis to enhance accuracy and efficiency for deep learning models in medical applications, including dermatology, plastic surgery, and ophthalmology. Leveraging feedback mechanisms and advanced algorithms, our approach iteratively refines initial labels, reducing reliance on manual intervention while improving label quality. Through empirical evaluation and case studies, we demonstrate the effectiveness of our proposed strategies in deep learning tasks across medical imaging domains. Our results highlight the importance of iterative refinement in automated data labeling to enhance the capabilities of deep learning systems in medical imaging applications.
Abstract:In the realm of continual learning, the presence of noisy labels within data streams represents a notable obstacle to model reliability and fairness. We focus on the data stream scenario outlined in pertinent literature, characterized by fuzzy task boundaries and noisy labels. To address this challenge, we introduce a novel and intuitive sampling method called Noisy Test Debiasing (NTD) to mitigate noisy labels in evolving data streams and establish a fair and robust continual learning algorithm. NTD is straightforward to implement, making it feasible across various scenarios. Our experiments benchmark four datasets, including two synthetic noise datasets (CIFAR10 and CIFAR100) and real-world noise datasets (mini-WebVision and Food-101N). The results validate the efficacy of NTD for online continual learning in scenarios with noisy labels in data streams. Compared to the previous leading approach, NTD achieves a training speedup enhancement over two times while maintaining or surpassing accuracy levels. Moreover, NTD utilizes less than one-fifth of the GPU memory resources compared to previous leading methods.
Abstract:This article introduces a novel approach to shuttlecock hitting event detection. Instead of depending on generic methods, we capture the hitting action of players by reasoning over a sequence of images. To learn the features of hitting events in a video clip, we specifically utilize a deep learning model known as SwingNet. This model is designed to capture the relevant characteristics and patterns associated with the act of hitting in badminton. By training SwingNet on the provided video clips, we aim to enable the model to accurately recognize and identify the instances of hitting events based on their distinctive features. Furthermore, we apply the specific video processing technique to extract the prior features from the video, which significantly reduces the learning difficulty for the model. The proposed method not only provides an intuitive and user-friendly approach but also presents a fresh perspective on the task of detecting badminton hitting events. The source code will be available at https://github.com/TW-yuhsi/A-New-Perspective-for-Shuttlecock-Hitting-Event-Detection.
Abstract:We propose a post-processor, called NeighborTrack, that leverages neighbor information of the tracking target to validate and improve single-object tracking (SOT) results. It requires no additional data or retraining. Instead, it uses the confidence score predicted by the backbone SOT network to automatically derive neighbor information and then uses this information to improve the tracking results. When tracking an occluded target, its appearance features are untrustworthy. However, a general siamese network often cannot tell whether the tracked object is occluded by reading the confidence score alone, because it could be misled by neighbors with high confidence scores. Our proposed NeighborTrack takes advantage of unoccluded neighbors' information to reconfirm the tracking target and reduces false tracking when the target is occluded. It not only reduces the impact caused by occlusion, but also fixes tracking problems caused by object appearance changes. NeighborTrack is agnostic to SOT networks and post-processing methods. For the VOT challenge dataset commonly used in short-term object tracking, we improve three famous SOT networks, Ocean, TransT, and OSTrack, by an average of ${1.92\%}$ EAO and ${2.11\%}$ robustness. For the mid- and long-term tracking experiments based on OSTrack, we achieve state-of-the-art ${72.25\%}$ AUC on LaSOT and ${75.7\%}$ AO on GOT-10K.