Abstract:Covariates play an indispensable role in practical time series forecasting, offering rich context from the past and sometimes extending into the future. However, their availability varies depending on the scenario, and situations often involve multiple target variables simultaneously. Moreover, the cross-variate dependencies between them are multi-granular, with some covariates having a short-term impact on target variables and others showing long-term correlations. This heterogeneity and the intricate dependencies arising in covariate-informed forecasting present significant challenges to existing deep models. To address these issues, we propose CITRAS, a patch-based Transformer that flexibly leverages multiple targets and covariates covering both the past and the future forecasting horizon. While preserving the strong autoregressive capabilities of the canonical Transformer, CITRAS introduces two novel mechanisms in patch-wise cross-variate attention: Key-Value (KV) Shift and Attention Score Smoothing. KV Shift seamlessly incorporates future known covariates into the forecasting of target variables based on their concurrent dependencies. Additionally, Attention Score Smoothing transforms locally accurate patch-wise cross-variate dependencies into global variate-level dependencies by smoothing the past series of attention scores. Experimentally, CITRAS achieves state-of-the-art performance in both covariate-informed and multivariate forecasting, demonstrating its versatile ability to leverage cross-variate dependency for improved forecasting accuracy.
Abstract:While many unsupervised learning models focus on one family of tasks, either generative or discriminative, we explore the possibility of a unified representation learner: a model which addresses both families of tasks simultaneously. We identify diffusion models, a state-of-the-art method for generative tasks, as a prime candidate. Such models involve training a U-Net to iteratively predict and remove noise, and the resulting model can synthesize high-fidelity, diverse, novel images. We find that the intermediate feature maps of the U-Net are diverse, discriminative feature representations. We propose a novel attention mechanism for pooling feature maps and further leverage this mechanism as DifFormer, a transformer feature fusion of features from different diffusion U-Net blocks and noise steps. We also develop DifFeed, a novel feedback mechanism tailored to diffusion. We find that diffusion models are better than GANs, and, with our fusion and feedback mechanisms, can compete with state-of-the-art unsupervised image representation learning methods for discriminative tasks - image classification with full and semi-supervision, transfer for fine-grained classification, object detection and segmentation, and semantic segmentation. Our project website (https://mgwillia.github.io/diffssl/) and code (https://github.com/soumik-kanad/diffssl) are available publicly.