Department of Computer Science, Tianjin University of Technology, Tianjin, China, National Institute of Health Data Science, Peking University, Beijing, China
Abstract:Privacy-preserving medical decision support for kidney disease requires localized deployment of large language models (LLMs) while maintaining clinical reasoning capabilities. Current solutions face three challenges: 1) Cloud-based LLMs pose data security risks; 2) Local model deployment demands technical expertise; 3) General LLMs lack mechanisms to integrate medical knowledge. Retrieval-augmented systems also struggle with medical document processing and clinical usability. We developed KidneyTalk-open, a desktop system integrating three technical components: 1) No-code deployment of state-of-the-art (SOTA) open-source LLMs (such as DeepSeek-r1, Qwen2.5) via local inference engine; 2) Medical document processing pipeline combining context-aware chunking and intelligent filtering; 3) Adaptive Retrieval and Augmentation Pipeline (AddRep) employing agents collaboration for improving the recall rate of medical documents. A graphical interface was designed to enable clinicians to manage medical documents and conduct AI-powered consultations without technical expertise. Experimental validation on 1,455 challenging nephrology exam questions demonstrates AddRep's effectiveness: achieving 29.1% accuracy (+8.1% over baseline) with intelligent knowledge integration, while maintaining robustness through 4.9% rejection rate to suppress hallucinations. Comparative case studies with the mainstream products (AnythingLLM, Chatbox, GPT4ALL) demonstrate KidneyTalk-open's superior performance in real clinical query. KidneyTalk-open represents the first no-code medical LLM system enabling secure documentation-enhanced medical Q&A on desktop. Its designs establishes a new framework for privacy-sensitive clinical AI applications. The system significantly lowers technical barriers while improving evidence traceability, enabling more medical staff or patients to use SOTA open-source LLMs conveniently.
Abstract:We propose an attention-injective deformable convolutional network called ADCrowdNet for crowd understanding that can address the accuracy degradation problem of highly congested noisy scenes. ADCrowdNet contains two concatenated networks. An attention-aware network called Attention Map Generator (AMG) first detects crowd regions in images and computes the congestion degree of these regions. Based on detected crowd regions and congestion priors, a multi-scale deformable network called Density Map Estimator (DME) then generates high-quality density maps. With the attention-aware training scheme and multi-scale deformable convolutional scheme, the proposed ADCrowdNet achieves the capability of being more effective to capture the crowd features and more resistant to various noises. We have evaluated our method on four popular crowd counting datasets (ShanghaiTech, UCF_CC_50, WorldEXPO'10, and UCSD) and an extra vehicle counting dataset TRANCOS, our approach overwhelmingly beats existing approaches on all of these datasets.