Abstract:Satellite Internet of Things (IoT) is to use satellites as the access points for IoT devices to achieve the global coverage of future IoT systems, and is expected to support burgeoning IoT applications, including communication, sensing, and computing. However, the complex and dynamic satellite environments and limited network resources raise new challenges in the design of satellite IoT systems. In this article, we focus on the joint design of communication, sensing, and computing to improve the performance of satellite IoT, which is quite different from the case of terrestrial IoT systems. We describe how the integration of the three functions can enhance system capabilities, and summarize the state-of-the-art solutions. Furthermore, we discuss the main challenges of integrating communication, sensing, and computing in satellite IoT to be solved with pressing interest.
Abstract:In healthcare, multimodal data is prevalent and requires to be comprehensively analyzed before diagnostic decisions, including medical images, clinical reports, etc. However, current large-scale artificial intelligence models predominantly focus on single-modal cognitive abilities and neglect the integration of multiple modalities. Therefore, we propose Stone Needle, a general multimodal large-scale model framework tailored explicitly for healthcare applications. Stone Needle serves as a comprehensive medical multimodal model foundation, integrating various modalities such as text, images, videos, and audio to surpass the limitations of single-modal systems. Through the framework components of intent analysis, medical foundation models, prompt manager, and medical language module, our architecture can perform multi-modal interaction in multiple rounds of dialogue. Our method is a general multimodal large-scale model framework, integrating diverse modalities and allowing us to tailor for specific tasks. The experimental results demonstrate the superior performance of our method compared to single-modal systems. The fusion of different modalities and the ability to process complex medical information in Stone Needle benefits accurate diagnosis, treatment recommendations, and patient care.
Abstract:Low earth orbit (LEO) satellite has been considered as a potential supplement for the terrestrial Internet of Things (IoT). In this paper, we consider grant-free non-orthogonal random access (GF-NORA) in orthogonal frequency division multiplexing (OFDM) system to increase access capacity and reduce access latency for LEO satellite-IoT. We focus on the joint device activity detection (DAD) and channel estimation (CE) problem at the satellite access point. The delay and the Doppler effect of the LEO satellite channel are assumed to be partially compensated. We propose an OFDM-symbol repetition technique to better distinguish the residual Doppler frequency shifts, and present a grid-based parametric probability model to characterize channel sparsity in the delay-Doppler-user domain, as well as to characterize the relationship between the channel states and the device activity. Based on that, we develop a robust Bayesian message passing algorithm named modified variance state propagation (MVSP) for joint DAD and CE. Moreover, to tackle the mismatch between the real channel and its on-grid representation, an expectation-maximization (EM) framework is proposed to learn the grid parameters. Simulation results demonstrate that our proposed algorithms significantly outperform the existing approaches in both activity detection probability and channel estimation accuracy.