Abstract:Recent research has shown that attention-based sequence-to-sequence models such as Listen, Attend, and Spell (LAS) yield comparable results to state-of-the-art ASR systems on various tasks. In this paper, we describe the development of such a system and demonstrate its performance on two tasks: first we achieve a new state-of-the-art word error rate of 3.43% on the test clean subset of LibriSpeech English data; second on non-native English speech, including both read speech and spontaneous speech, we obtain very competitive results compared to a conventional system built with the most updated Kaldi recipe.
Abstract:This paper considers Aspect-based Opinion Summarization (AOS) of reviews on particular products. To enable real applications, an AOS system needs to address two core subtasks, aspect extraction and sentiment classification. Most existing approaches to aspect extraction, which use linguistic analysis or topic modeling, are general across different products but not precise enough or suitable for particular products. Instead we take a less general but more precise scheme, directly mapping each review sentence into pre-defined aspects. To tackle aspect mapping and sentiment classification, we propose two Convolutional Neural Network (CNN) based methods, cascaded CNN and multitask CNN. Cascaded CNN contains two levels of convolutional networks. Multiple CNNs at level 1 deal with aspect mapping task, and a single CNN at level 2 deals with sentiment classification. Multitask CNN also contains multiple aspect CNNs and a sentiment CNN, but different networks share the same word embeddings. Experimental results indicate that both cascaded and multitask CNNs outperform SVM-based methods by large margins. Multitask CNN generally performs better than cascaded CNN.