Abstract:Audio description (AD) is a crucial accessibility service provided to blind persons and persons with visual impairment, designed to convey visual information in acoustic form. Despite recent advancements in multilingual machine translation research, the lack of well-crafted and time-synchronized AD data impedes the development of audio description translation (ADT) systems that address the needs of multilingual countries such as Switzerland. Furthermore, since the majority of ADT systems rely solely on text, uncertainty exists as to whether incorporating visual information from the corresponding video clips can enhance the quality of ADT outputs. In this work, we present SwissADT, the first ADT system implemented for three main Swiss languages and English. By collecting well-crafted AD data augmented with video clips in German, French, Italian, and English, and leveraging the power of Large Language Models (LLMs), we aim to enhance information accessibility for diverse language populations in Switzerland by automatically translating AD scripts to the desired Swiss language. Our extensive experimental ADT results, composed of both automatic and human evaluations of ADT quality, demonstrate the promising capability of SwissADT for the ADT task. We believe that combining human expertise with the generation power of LLMs can further enhance the performance of ADT systems, ultimately benefiting a larger multilingual target population.
Abstract:Audio descriptions (ADs) function as acoustic commentaries designed to assist blind persons and persons with visual impairments in accessing digital media content on television and in movies, among other settings. As an accessibility service typically provided by trained AD professionals, the generation of ADs demands significant human effort, making the process both time-consuming and costly. Recent advancements in natural language processing (NLP) and computer vision (CV), particularly in large language models (LLMs) and vision-language models (VLMs), have allowed for getting a step closer to automatic AD generation. This paper reviews the technologies pertinent to AD generation in the era of LLMs and VLMs: we discuss how state-of-the-art NLP and CV technologies can be applied to generate ADs and identify essential research directions for the future.
Abstract:Large Language Models (LLMs) produce eloquent texts but often the content they generate needs to be verified. Traditional information retrieval systems can assist with this task, but most systems have not been designed with LLM-generated queries in mind. As such, there is a compelling need for integrated systems that provide both retrieval and generation functionality within a single user interface. We present MODOC, a modular user interface that leverages the capabilities of LLMs and provides assistance with detecting their confabulations, promoting integrity in scientific writing. MODOC represents a significant step forward in scientific writing assistance. Its modular architecture supports flexible functions for retrieving information and for writing and generating text in a single, user-friendly interface.
Abstract:We introduce MemSum-DQA, an efficient system for document question answering (DQA) that leverages MemSum, a long document extractive summarizer. By prefixing each text block in the parsed document with the provided question and question type, MemSum-DQA selectively extracts text blocks as answers from documents. On full-document answering tasks, this approach yields a 9% improvement in exact match accuracy over prior state-of-the-art baselines. Notably, MemSum-DQA excels in addressing questions related to child-relationship understanding, underscoring the potential of extractive summarization techniques for DQA tasks.
Abstract:The abstracts of scientific papers consist of premises and conclusions. Structured abstracts explicitly highlight the conclusion sentences, whereas non-structured abstracts may have conclusion sentences at uncertain positions. This implicit nature of conclusion positions makes the automatic segmentation of scientific abstracts into premises and conclusions a challenging task. In this work, we empirically explore using Normalized Mutual Information (NMI) for abstract segmentation. We consider each abstract as a recurrent cycle of sentences and place segmentation boundaries by greedily optimizing the NMI score between premises and conclusions. On non-structured abstracts, our proposed unsupervised approach GreedyCAS achieves the best performance across all evaluation metrics; on structured abstracts, GreedyCAS outperforms all baseline methods measured by $P_k$. The strong correlation of NMI to our evaluation metrics reveals the effectiveness of NMI for abstract segmentation.
Abstract:The goal of local citation recommendation is to recommend a missing reference from the local citation context and optionally also from the global context. To balance the tradeoff between speed and accuracy of citation recommendation in the context of a large-scale paper database, a viable approach is to first prefetch a limited number of relevant documents using efficient ranking methods and then to perform a fine-grained reranking using more sophisticated models. In that vein, BM25 has been found to be a tough-to-beat approach to prefetching, which is why recent work has focused mainly on the reranking step. Even so, we explore prefetching with nearest neighbor search among text embeddings constructed by a hierarchical attention network. When coupled with a SciBERT reranker fine-tuned on local citation recommendation tasks, our hierarchical Attention encoder (HAtten) achieves high prefetch recall for a given number of candidates to be reranked. Consequently, our reranker needs to rerank fewer prefetch candidates, yet still achieves state-of-the-art performance on various local citation recommendation datasets such as ACL-200, FullTextPeerRead, RefSeer, and arXiv.
Abstract:We explore the suitability of self-attention models for character-level neural machine translation. We test the standard transformer model, as well as a novel variant in which the encoder block combines information from nearby characters using convolutions. We perform extensive experiments on WMT and UN datasets, testing both bilingual and multilingual translation to English using up to three input languages (French, Spanish, and Chinese). Our transformer variant consistently outperforms the standard transformer at the character-level and converges faster while learning more robust character-level alignments.